Skip to main content
Log in

Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The current study highlights the design and construction of a sensitive and selective sensor for detection of dopamine and tyrosine using a GO-SnS2 quantum dots by a drop casting method on glassy carbon electrode. Highly porous nano-crystalline GO-SnS2 quantum dots were synthesized by using ultrasonication followed by hydrothermal method in a facile manner. XRD, SEM, XPS, TEM, and pore size distribution techniques were used to characterize the quantum dots that were produced. The newly fabricated electrode was evaluated for EIS (Electrochemical impedance spectroscopy), CV (cyclic voltammetry) and chronoamperometric methods. The observed limit of detection of dopamine was observed to be 26 nM. High selectivity and sensitivity were observed for electrochemical detection of dopamine and tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Greenstein, M. Winitz, Chemistry of the amino acids. Yale J. Biol. Med. 38, 383–384 (1966)

    Google Scholar 

  2. M.L. Heien, A.S. Khan, J.L. Ariansen, J.H. Cheer, P.E. Phillips, K.M. Wassum, R.M. Wightman, Real-time measurement of dopamine fluctuations after cocaine in the brain of behaving rats. Proc. Natl. Acad. Sci. USA 102, (2005) 10023–10028

  3. T. Paus, Primate anterior cingulate cortex: Where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2, 417–424 (2001)

    Article  CAS  PubMed  Google Scholar 

  4. N.D. Volkow, G.-J. Wang, J.S. Fowler, D. Tomasi, F. Telang, Addiction: Beyond dopamine reward circuitry. Proc. Natl. Acad. Sci. USA, 108 (2011) 15037–15042

  5. R.A. Wise, Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. R. Cools, Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14, 381–395 (2008)

    Article  CAS  PubMed  Google Scholar 

  7. S.R. Ali, Y. Ma, R.R. Parajuli, Y. Balogun, W.Y.-C. Lai, H.A. He, Nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Anal. Chem. 79, 2583–2587 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. R.M. Wightman, L.J. May, A.C. Michael, Detection of dopamine dynamics in the brain. Anal. Chem. 60, 769A–793A (1988)

    Article  CAS  PubMed  Google Scholar 

  9. M. Meyyappan, Nano biosensors for neurochemical monitoring. Nano Conv 2, 18 (2015)

    Article  Google Scholar 

  10. H.-C. Lee, T.-H. Chen, W.-L. Tseng, C.-H. Lin, Novel core etching technique of gold nanoparticles for colorimetric dopamine detection. Analyst 137, 5352–5357 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. T.H. Kim, C.H. Yea, S.T.D. Chueng, P.T.T. Yin, B. Conley, K. Dardir, Y. Pak, G.Y. Jung, J.W. .Choi, K.B.Lee, Large-scale nanoelectrode arrays to monitor the dopaminergic differentiation of human neural stem cells. Adv. Mater. 27, 6356–6362 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K.E. Hubbard, A. Wells, T.S. Owens, M. Tagen, C.H. Fraga, C.F. Stewart, Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed. Chromatogr. 24, 626–631 (2010)

    CAS  PubMed  Google Scholar 

  13. B. Kong, A. Zhu, Y. Luo, Y. Tian, Y. Yu, G. Shi, Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew Chem. Int. Edit 123, 1877–1880 (2011)

    Article  Google Scholar 

  14. Y. Luo, L. Ma, X. Zhang, A.Z. Liang, Jiang, Sers detection of dopamine using label-free acridine red as molecular probe in reduced graphene oxide/silver nanotriangle sol substrate. Nanoscale Res. Lett. 10, 230 (2015)

    Article  PubMed Central  Google Scholar 

  15. L. Tang, Y. Wang, Y. Li, H. Feng, J. Lu, J. Li, Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19, 2782–2789 (2009)

    Article  CAS  Google Scholar 

  16. N.G. Shang, P. Papakonstantinou, M. McMullan, M. Chu, A. Stamboulis, A. Potenza, S.S. Dhesi, H. Marchetto, Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv. Funct. Mater. 18, 3506–3514 (2008)

    Article  CAS  Google Scholar 

  17. Y. Shao, J. Wang, H. Wu, J. Liu, I.A. Aksay, Y. Lin, Graphene based electrochemical sensors and biosensors: A review. Electroanalysis 22, 1027–1036 (2010)

    Article  CAS  Google Scholar 

  18. J. Ping, J. Wu, Y. Wang, Y. Ying, Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron. 34, 70–76 (2012)

    Article  CAS  PubMed  Google Scholar 

  19. Y. Mao, Y. Bao, S. Gan, F. Li, L. Niu, Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens. Bioelectron. 28, 291–297 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. H. Kim, K.-Y. Park, J. Hong, K. Kang, All-graphene-battery: Bridging the gap between supercapacitors and lithium-ion batteries. Sci. Rep. 4, 5278 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)

    Article  CAS  PubMed  Google Scholar 

  22. S.H. Chae, Y.H. Lee, Carbon nanotubes and graphene towards soft electronics. Nano Conv. 1, 15 (2014)

    Article  Google Scholar 

  23. S. Woo, Y.-R. Kim, T.D. Chung, Y. Piao, H. Kim, Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim. Acta 59, 509–514 (2012)

    Article  CAS  Google Scholar 

  24. M. Mallesha, R. Manjunatha, C. Nethravathi, G.S. Suresh, J.S. Rajamathi, Melo, T.V. Venkatesha, Functionalized-graphene modified graphite electrode for the selective determination of dopamine in presence of uric acid and ascorbic acid. Bioelectrochemistry 81, 81, 104–108 (2011)

    Article  CAS  PubMed  Google Scholar 

  25. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3, 101–105 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. K. Wu, J. Fei, S. Hu, Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes. Anal. Biochem. 318, 100–106 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. L. Zhang, X. Jiang, Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J. Electroanal. Chem. 583, 292–299 (2005)

    Article  CAS  Google Scholar 

  28. C.-X. Xu, K.-J. Huang, Y. Fan, Z.-W. Wu, J. Li, T. Gan, Simultaneous electrochemical determination of dopamine and tryptophan using a TIO2-graphene/poly(4-aminobenzenesulfonic acid) composite film based platform. Mater. Sci. Eng. C 32, 969–974 (2012)

    Article  CAS  Google Scholar 

  29. L. Jiang, Z. Fan, Design of advanced porous graphene materials: From graphene nanomesh to 3D architectures. Nanoscale 6, 1922–1945 (2014)

    Article  CAS  PubMed  Google Scholar 

  30. S. Ravinder Kour, S.-J. Arya, V. Young, P. Gupta, Bandhoria, Ajit Khosla, Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. J. Electrochem. Soc. 167, 037555 (2020)

    Article  Google Scholar 

  31. A. Asha Sharma, A. Ahmed, S.K. Singh, A. Oruganti, S. Khosla, Arya, Recent Advances in Tin Oxide Nanomaterials as Electrochemical/Chemiresistive. Sensors. J 168 (, 027505 (2021) Electrochem. Soc. )

    Google Scholar 

  32. Q. Huang, X. Lin, L. Tong, and Q. Tong, Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells. ACS Sustainable Chemistry & Engineering. 8 (, 1644–1650 (2020). )

    Article  Google Scholar 

  33. R. Appiah-Ntiamoah, A. Fufa Baye, H. Kim, ZnO-ZnFe2O4/Fe3O4/Carbon Nanocomposites for Ultrasensitive and Selective Dopamine Detection. ACS Appl. Nano Mater. 5, 4754–4766. https://doi.org/10.1021/acsanm.1c04222 (2022).

    Article  CAS  Google Scholar 

  34. J. MN i, C. Chen, Wang, Y.Wang, L., W. Huang, P. Xiong, Y.X.J. Zhao, Fei, A high-sensitive dopamine electrochemical sensor based on multilayer Ti3C2MXene, graphitized multi-walled carbon nanotubes and ZnO nanospheres. 178 (2022)107410

  35. G. Deepthi Reddy, M. Noorjahan, A. Ratnamala, Novel Visible-Range Luminescence of Pristine Nano Zirconia Phosphor using Green Fabrication Technique. Bull. Mater. Sci. 42 (, 34 (2019), , )

    Article  Google Scholar 

  36. M. Dekun, Q. Tang, W. Zhang, Q. Tang, R. Zhang, W. Yu, Y. Zhou, Large-Scale Hydrothermal Synthesis of SnS2 Nanobelts. J. Nanosci. Nanotechnol. 10, 1–4 (2005)

    Google Scholar 

  37. H. Chen, B. Zhang, J. Zhang, W. Yu, J. Zheng, Z. Ding, H. Li, L. Ming, D.A. Mifounde Bengono, S. Chen, H. Tong, In-situ Grown SnS2 Nanosheets on rGO as an Advanced Anode Material for Lithium and Sodium Ion Batteries Front. Chem. (2018). https://doi.org/10.3389/fchem.2018.00629

    Article  PubMed  PubMed Central  Google Scholar 

  38. A. Zhu, L. Qiao, Z. Jia, P. Tan, Y. liu, Y. maa, J. Pan, C-S bonds induced ultrafine SnS2 dots/ porous g-C3N4 sheets 0D/2D heterojunction: synthesis and photocatalytic mechanism investigation, 46 (2017)17032. DOI:https://doi.org/10.1039/C7DT03894A

  39. M. Choia, W. Williamb, J. Hwanga, D. Yoona, J. Kima, A Supercritical Ethanol Route for One-pot Synthesis of Tin Sulfide–Reduced Graphene Oxides and Their Anode Performance for Lithium Ion Batteries, Journal of Industrial and Engineering Chemistry 59 (, 160–166 (2018), )

  40. F. Huang, Y. Peng, G. Jin, S. Zhang, J. Kong, Selective determination of haloperidol and hydroxyzine at multi-walled carbon nanotubes-modified glassy carbon electrodes, Sensors 8 (2008) 1879–1889

  41. R. Manjunatha, G.S. Suresh, J.S. Melo, F. Stanislaus D’SouzaT. Venkatarangaiah, Venkatesha, Simultaneous determination of ascorbic acid, dopamine and uric acid using polystyrene sulfonate wrapped, multiwalled carbon nanotubes bound to graphite electrode through layer-by-layer technique. Sens. Actuators B: Chem. 19, 643–650 (2010)

  42. P. Zanello, Inorganic Electrochemistry: Theory, Practice and Application, The Royal Society of Chemistry (2003). ISBN 0-85404-661-5

  43. E. Laviron, General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusion less Electrochemical Systems. J. Electroanal. Chem. Interfacial. Electrochem. 101, 19–28 (1979). https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  44. H. Zhao, Y. Zhang, Z. Yuan, Electrochemical determination of dopamine using a poly(2-picolinic acid) modified glassy carbon electrode. Analyst 126, 358–360 (2001)

    Article  CAS  PubMed  Google Scholar 

  45. G. Jin, Y. Zhang, W. Cheng, Poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid. Sens. Actuators B 107, 528–534 (2005)

    Article  CAS  Google Scholar 

  46. B.-K. Kim, J.Y. Lee, J.H. Park, J. Kwak, Electrochemical detection of dopamine using a bare indium-tin oxide electrode and scan rate control. J. Electroanal. Chem. 708, 7–12 (2013)

    Article  CAS  Google Scholar 

  47. R. Nurzulaikha, H.N. Lim, I. Harrison, S.S. Lim, A. Pandikumar, N.M. Huang, S.P. Lim, G.S.H. Thien, N. Yusoff, I. Ibrahim, Graphene/SnO2 nanocomposite modified electrode for electrochemical detection of dopamine. Sens. Biosensing Res. 5, 42–49 (2015)

    Article  Google Scholar 

  48. S. Pitchaimani Veerakumar, S.-M. Manavalan, Chen, Alagarsamy Pandikumar, and King-Chuen Lin, Ultrafine Bi-Sn nanoparticle decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug. Nanoscale 12, 22217–22233 (2020)

    Article  PubMed  Google Scholar 

  49. S. Thiagarajan, R.F. Yang, S.M. Chen, Palladium nanoparticles modified electrode for the selective detection of catecholamine neurotransmitters in presence of ascorbic acid. Bioelectrochemistry. 75, 163–169 (2009). DOI:https://doi.org/10.1016/j.bioelechem.2009.03.014

    Article  CAS  PubMed  Google Scholar 

  50. Y.J. Yang, One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens. Actuators B Chem 221, 750–759 (2015)

    Article  CAS  Google Scholar 

  51. E.Elugoke Saheed, O.E.Fayemi Abolanle, S.Adekunle Bhekie, B.Mamba Thabo, T.I. Nkambule, E. Eno, Ebenso, Electrochemical sensor for the detection of dopamine using carbon quantum dots/copper oxide nanocomposite modified electrode Flatchem,33 (2022) 100372. https://doi.org/10.1016/j.flatc.2022.100372

  52. L. Bai Qiang, X. Hongyang, Yi, S. Shugao, W. Lina, L. Manhong, Du Fanglin, Y. Zhugen, Sui Ning, Nitrogen-Doped Graphdiyne Quantum-dots as an Optical-Electrochemical sensor for sensitive detection of dopamine. Microchem. J. 179, 107521 (2022). https://doi.org/10.1016/j.microc.2022.107521

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Ratnamala or K. Chandra Babu Naidu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasheena, M., Ratnamala, A., Noorjahan, M. et al. Graphene Oxide Decorated Tin Sulphide Quantum Dots for Electrochemical Detection of Dopamine and Tyrosine. J Inorg Organomet Polym 32, 4160–4172 (2022). https://doi.org/10.1007/s10904-022-02396-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02396-9

Keywords

Navigation