Skip to main content
Log in

Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Reduced graphene oxide containing Fe3O4 nanoparticles was decorated with hydroxypropyl-β-cyclodextrin (HP-β-CD) to construct a novel nanocomposite (3D-rGO/Fe3O4/HP-β-CD). The composite was placed on a glassy carbon electrode (GCE) to design an electrochemical sensor for detecting simultaneously serotonin (5-HT), dopamine (DA), and ascorbic acid (AA). The interconnected porous reduced graphene oxide framework tightly anchored to the Fe3O4 magnetic nanoparticles warrants good electrical conductivity and efficient catalytic activity. The HP-β-CD acts as a supramolecular host with high recognition ability for 5-HT, DA and AA. Well-separated oxidation peaks and increased peak currents were observed for 5-HT, DA, and AA individually and in mixtures by differential pulse voltammetry (DPV). The following figures of merit were found for simultaneous electrochemical determination of 5-HT, DA, and AA: (a) Well separated peaks at around 0.316, 0.16 and − 0.044 V; (b) linear responses in the 0.01 – 25 μM, 0.02 – 25 μM and 10 – 350 μM; (c) detection limits of 3.3 nM, 6.7 nM and 3.3 μM (S/N = 3), and (d) recoveries of 96.9-103%, 97.3%-102% and 96.3-105% from spiked serum samples, respectively. All relative standard deviation (RSD) are less than 4%.

Schematic representation of simultaneous detecting serotonin (5-HT), dopamine (DA) and ascorbic acid (AA) for three-dimensional reduced-graphene oxide/Fe3O4/hydroxypropyl-β-cyclodextrin (3D-rGO/Fe3O4/HP-β-CD) by differential pulse voltammetry (DPV) approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nichols DE, Nichols CD (2008) Serotonin receptors. Chem Rev 108:1614–1641

    Article  CAS  Google Scholar 

  2. Arrigoni O, Tullio CD (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1–9

    Article  CAS  Google Scholar 

  3. Nieoullon A, Coquerel A (2003) Dopamine: a key regulator to adapt action, emotion, motivation and cognition. Curr Opin Neurol 16:S3–S9

    Article  CAS  Google Scholar 

  4. Wightman RM, May LJ, Michae AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–779A

    Article  CAS  Google Scholar 

  5. Mo JW, Ogorevc B (2001) Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber. Anal Chem 73:1196–1202

    Article  CAS  Google Scholar 

  6. Wang Y, Xia YS (2019) Optical, electrochemical and catalytic methods for in-vitro diagnosis using carbonaceous nanoparticles: a review. Microchim Acta 186:50

    Article  Google Scholar 

  7. Batool R, Akhtar MA, Hayat A, Han DX, Niu L, Ahmad MA, Nawaz MH (2019) A nanocomposite prepared from magnetite nanoparticles, polyaniline and carboxy-modified graphene oxide for non-enzymatic sensing of glucose. Microchim Acta 186:267

    Article  Google Scholar 

  8. Li SM, Wang YS, Hsiao ST, Liao WH, Lin CW, Yang SY, Tien HW, Ma CCM, Hu CC (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J Mater Chem C 3:9444–9453

    Article  CAS  Google Scholar 

  9. Khohnevisan K, Maleki H, Honarvarfard E, Baharifar H, Gholami M, Faridbod F, Larijani B, Majidi RF, Khorramizadeh MR (2019) Nanomaterial based electrochemical sensing of the biomarker serotonin: a comprehensive review. Microchim Acta 186:49

    Article  Google Scholar 

  10. Wei J, He JB, Cao SQ, Zhu YW, Wang Y, Hang GP (2010) Enhanced sensing of ascorbic acid, dopamine and serotonin at solid carbon paste electrode with a nonionic polymer film. Talanta 83:190–196

    Article  CAS  Google Scholar 

  11. Jin GP, Lin XQ, Gong JM (2004) Novel choline and acetylcholine modified glassy carbon electrodes for simultaneous determination of dopamine, serotonin and ascorbic acid. J Electroanal Chem 569:135–142

    Article  CAS  Google Scholar 

  12. Zhou JQ, Sheng ML, Jiang XY, Wu GZ, Gao F (2013) Simultaneous determination of dopamine, serotonin and ascorbic acid at a glassy carbon electrode modified with carbon-spheres. Sensors 13:14029–14040

    Article  CAS  Google Scholar 

  13. Li C, Shi G (2012) Three-dimensional graphene architectures. Nanoscale 4:5549–5563

    Article  CAS  Google Scholar 

  14. Lu LP, Guo LQ, Kang TF, Cheng SY (2017) A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Microchim Acta 184:2949–2957

    Article  CAS  Google Scholar 

  15. Liang WT, Rong YQ, Fan LF, Dong WJ, Dong QC, Yang C, Zhong ZH, Dong C, Shuang SM, Wong WY (2018) 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J Mater Chem C 6:12822–12829

    Article  CAS  Google Scholar 

  16. Zhang Y, Huang BT, Yu F, Yuan QH, Gu M, Ji JY, Zhang Y, Li YC (2018) 3D nitrogen-doped graphite foam@Prussian blue: an electrochemical sensing platform for highly sensitive determination of H2O2 and glucose. Microchim Acta 185:86

    Article  Google Scholar 

  17. Zhao YN, Zhou J, Jia ZM, Huo DQ, Liu QY, Zhong DQ, Hu Y, Yang M, Bian MH, Hou CJ (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92

    Article  Google Scholar 

  18. Esmaeilpour M, Sardarian AR, Javidi J (2012) Schiff base complex of metal ions supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient, selective and recyclable catalyst for synthesis of 1,1-diacetates from aldehydes under solvent-free conditions. Appl Catal A: General 445:359–367

    Article  Google Scholar 

  19. Kumar R, Singh RK, Vaz AR, Savu RSA, Moshkalev SA (2017) Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl Mater Interfaces 9:8880–8890

    Article  CAS  Google Scholar 

  20. Wang QQ, Zhang XP, Huang L, Zhang ZQ, Dong SJ (2017) One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl Mater Interfaces 9:7465–7471

    Article  CAS  Google Scholar 

  21. Qiu N, Liu Y, Xiang M, Lu XM, Yang Q, Guo R (2018) A facile and stable colorimetric sensor based on three-dimensional graphene/mesoporous Fe3O4 nanohybrid for highly sensitive and selective detection of p-nitrophenol. Sensors Actuators B Chem 266:86–94

    Article  CAS  Google Scholar 

  22. Chang Z, Zhou YL, Hao LJ, Hao YQ, Zhu X, Xu MT (2017) Simultaneous determination of dopamine and ascorbic acid using β-cyclodextrin/Au nanoparticles/graphene-modified electrodes. Anal Methods 9:664–671

    Article  CAS  Google Scholar 

  23. Abbaspour A, Noori A (2011) A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens Bioelectron 26:4674–4680

    Article  CAS  Google Scholar 

  24. Niu XH, Mo ZL, Yang X, Sun MY, Zhao P, Li ZL, Ouyang MX, Liu ZY, Gao HH, Guo RB, Liu NJ (2018) Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Microchim Acta 185:328

    Article  Google Scholar 

  25. Feng WL, Liu C, Lu SY, Zhang CY, Zhu XH, Liang Y, Nan JM (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509

    Article  CAS  Google Scholar 

  26. Upadhyay SS, Kalambate PK, Srivastava AK (2017) Enantioselective analysis of moxifloxacin hydrochloride enantiomers with graphene-β-cyclodextrin-nanocomposite modified carbon paste electrode using adsorptive stripping differential pulse voltammetry. Electrochim Acta 248:258–269

    Article  CAS  Google Scholar 

  27. Liang WT, Yang C, Zhou DY, Haneoka H, Nishijima M, Fukuhara G, Mori T, Castiglione F, Mele A, Caldera F, Trotta F, Inoue Y (2013) Phase-controlled supramolecular photochirogenesis in cyclodextrin nanosponges. Chem Commun 49:3510–3512

    Article  CAS  Google Scholar 

  28. Liang WT, Huang Y, Lu DT, Ma XW, Gong T, Cui XD, Yu BF, Yang C, Dong C, Shuang SM (2019) β-Cyclodextrin-hyaluronic acid polymer functionalized magnetic graphene oxide nanocomposites for targeted photo-chemotherapy of tumor cells. Polymers 11:133

    Article  Google Scholar 

  29. Chaudhuri S, Chakraborty S, Sengupta PK (2010) Encapsulation of serotonin in β-cyclodextrin nano-cavities: fluorescence spectroscopic and molecular modeling studies. J Mol Struct 975:160–165

    Article  CAS  Google Scholar 

  30. Palomar-Pardavé M, Alarcón-ángeles G, Ramírez-Silva MT, Romero-Romo M, Rojas-Hernández A, Corona-Avendano S (2011) Electrochemical and spectrophotometric determination of the formation constants of the ascorbic acid-β-cyclodextrin and dopamine-β-cyclodextrin inclusion complexes. J Incl Phenom Macrocycl Chem 69:91–99

    Article  Google Scholar 

  31. Dresselhaus MS, Jorio A, Souza Filho AG, Saito R (2010) Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. Phil Trans R Soc A 368:5355–5377

    Article  CAS  Google Scholar 

  32. Adams RN (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York

    Google Scholar 

  33. Torabi R, Compton RG (2007) A simple electroanalytical methodology for the simultaneous determination of dopamine, serotonin and ascorbic acid using an unmodified edge plane pyrolytic graphite electrode. Anal Bioanal Chem 387:2793–2800

    Article  Google Scholar 

  34. Khan Md ZH, Liu XQ, Tang YF, Zhu JH, Hu WP, Liu XH (2018) A glassy carbon electrode modified with a composite consisting of gold nanoparticle, reduced graphene oxide and poly(L-arginine) for simultaneous voltammetric determination of dopamine, serotonin and L-tryptophan. Microchim Acta 185:439

    Article  Google Scholar 

  35. Jiang XH, Lin XQ (2005) Overoxidized polypyrrole film directed DNA immobilization for construction of electrochemical micro-biosensors and simultaneous determination of serotonin and dopamine. Anal Chim Acta 537:145–151

    Article  CAS  Google Scholar 

  36. Han HS, Lee HK, You JM, Jeong H, Jeon S (2014) Electrochemical biosensor for simultaneous determination of dopamine and serotonin based on electrochemically reduced-GO-porphyrin. Sensors Actuators B Chem 190:886–895

    Article  CAS  Google Scholar 

  37. Sun DF, Li HJ, Li MJ, Li CP, Dai HL, Sun DZ, Yang BH (2018) Electrodeposition synthesis of a NiO/CNT/PEDOT composite for simultaneous detection of dopamine, serotonin, and tryptophan. Sensors Actuators B Chem 259:433–442

    Article  CAS  Google Scholar 

  38. Wang ZH, Liang QL, Wang YM, Luo GA (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129–134

    Article  CAS  Google Scholar 

  39. Deng WF, Yuan XY, Tan YM, Ma M, Xie QJ (2016) Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens Bioelectron 85:618–624

    Article  CAS  Google Scholar 

  40. Huang HP, Yue YF, Chen ZZ, Chen YN, Wu SZ, Liao JS, Liu SJ, Wen HR (2019) Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim Acta 186:189

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted with the support of the National Natural Science Foundation of China (No. 21976113, 21871194, 21707082, 21874087, and 21575084), the Natural Science Foundation of Shanxi Province (No. 201801D221059, 201801D121040), the Hundred Talent Program of Shanxi Province, the Hong Kong Research Grants Council (PolyU 153051/17P) and the Hong Kong Polytechnic University (1-ZE1C and 847S). We are especially grateful for Scientific Instrument Center of Shanxi University providing XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenting Liang, Jianping Niu, Cheng Yang or Wai-Yeung Wong.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.38 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Rong, Y., Fan, L. et al. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin . Microchim Acta 186, 751 (2019). https://doi.org/10.1007/s00604-019-3861-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3861-3

Keywords

Navigation