Skip to main content
Log in

Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This article deals with the analysis of the contact complementarity problem for Lagrangian systems subjected to unilateral constraints, and with a singular mass matrix and redundant constraints. Previous results by the authors on existence and uniqueness of solutions of some classes of variational inequalities are used to characterize the well-posedness of the contact problem. Criteria involving conditions on the tangent cone and the constraints gradient are given. It is shown that the proposed criteria easily extend to the case where the system is also subjected to a set of bilateral holonomic constraints, in addition to the unilateral ones. In the second part, it is shown how basic convex analysis may be used to show the equivalence between the Lagrangian and the Hamiltonian formalisms when the mass matrix is singular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Another constraint qualification guaranteeing nonemptyness of \(\tilde{K}\), hence of Φ, is range \((\nabla h(q)^{\mathrm{T}})- \mathbb {R}^{m}_{+}=\mathbb {R}^{m}\), which does not imply that ∇h(q)T has rank m [17].

  2. The minus sign is added here just to be coherent with the unilateral case.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    Google Scholar 

  2. Addi, K., Brogliato, B., Goeleven, D.: A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Applications in electronics. Math. Program., Ser. A 126(1), 31–67 (2011)

    Article  MathSciNet  Google Scholar 

  3. Agrawal, S.K.: Inertia matrix singularity of series-chain spatial manipulators with point masses. J. Dyn. Syst. Meas. Control 115(4), 723–725 (1993). doi:10.1115/1.2899204

    Article  Google Scholar 

  4. Agrawal, S.K.: Inertia matrix singularity of planar series-chain manipulators. In: Proceedings of the IEEE Int. Conference on Robotics and Automation, Sacramento, California, USA, April 1991, pp. 102–107 (1991)

    Chapter  Google Scholar 

  5. Agrawal, S.K.: Series-chain planar manipulators: inertial singularities. J. Mech. Des. 115(4), 941–945 (1993). doi:10.1115/1.2919291

    Article  Google Scholar 

  6. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, Berlin (1989)

    MATH  Google Scholar 

  7. Aubin, J.P.: Applied Functional Analysis. Wiley, New York (1979)

    MATH  Google Scholar 

  8. Balakrishnan, A.V.: Vibrating systems with singular mass-inertia matrices. In: Proceedings of First International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, Florida, USA, 9–11 May 1996 (1996)

    Google Scholar 

  9. Batlle, C., Gomis, J., Pons, J.M., Roman-Roy, N.: Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems. J. Math. Phys. 27(12), 2953–2962 (1986)

    Article  MathSciNet  Google Scholar 

  10. Bernstein, D.S.: Matrix, Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  11. Bertsekas, D.P.: Convex Optimization Theory. Athena Scientific, Belmont (2009)

    MATH  Google Scholar 

  12. Bhat, S.P., Bernstein, D.S.: Second-order systems with singular mass matrix and an extension of Guyan reduction. SIAM J. Matrix Anal. Appl. 17(3), 649–657 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brezis, H.: Analyse Fonctionnelle. Théorie et Applications, 4th edn. Masson, Paris (1983)

    MATH  Google Scholar 

  14. Brogliato, B.: Nonsmooth Mechanics. Models, Dynamics and Control, 2nd edn. Springer, London (1999)

    MATH  Google Scholar 

  15. Brogliato, B.: Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems. Multibody Syst. Dyn. 29(3), 289–325 (2013). doi:10.1007/s11044-012-9317-8

    Article  MathSciNet  Google Scholar 

  16. Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn. 32(2), 175–216 (2014). doi:10.1007/s11044-013-9392-5

    Article  MathSciNet  Google Scholar 

  17. Brogliato, B., Thibault, L.: Well-posedness results for non-autonomous complementarity systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Cariñena, J.F.: Theory of singular Lagrangians. Fortschr. Phys. 38(9), 641–679 (1990)

    Article  MathSciNet  Google Scholar 

  19. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Volume I. Springer Series in Operations Research. Springer, New York (2003)

    MATH  Google Scholar 

  20. Fraczek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011)

    Article  MATH  Google Scholar 

  21. Garcia de Jalon, J., Gutierrez-Lopez, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraints forces. Multibody Syst. Dyn. 30(3), 311–341 (2013). doi:10.1007/s11044-013-9358-7

    Article  MathSciNet  Google Scholar 

  22. Garcia de Jalon, J., Callejo, A., Hidalgo, A.F.: Efficient solution of Maggi’s equations. J. Comput. Nonlinear Dyn. 7, 021003 (2012)

    Article  Google Scholar 

  23. Havelkova, M.: A geometric analysis of dynamical systems with singular Lagrangians. Commun. Math. 19, 169–178 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  25. Hurtado, J.E., Sinclair, A.J.: Lagrangian mechanics of overparameterized systems. Nonlinear Dyn. 66, 201–212 (2011)

    Article  MathSciNet  Google Scholar 

  26. Kamimura, K.: Singular Lagrangian and constrained Hamiltonian systems, generalized canonical formalism. Nuovo Cimento B 68(1), 33–54 (1982)

    Article  MathSciNet  Google Scholar 

  27. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3, 011004 (2008)

    Article  MATH  Google Scholar 

  28. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)

    Article  MathSciNet  Google Scholar 

  29. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of constrained robots. IEEE Trans. Autom. Control 33(5), 419–426 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moreau, J.J.: Les liaisons unilatérales et le principe de Gauss. C. R. Acad. Sci., Paris, 1er Sem. 256(4), 871–874 (1963)

    MathSciNet  MATH  Google Scholar 

  31. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4(1), 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  32. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. Int. Centre for Mechanical Sciences, Courses and Lectures, vol. 302, pp. 1–82. Springer, Berlin (1988)

    Chapter  Google Scholar 

  33. Pons, J.M.: On Dirac’s incomplete analysis of gauge transformations. Stud. Hist. Philos. Mod. Phys. 36, 491–518 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics (1970)

    MATH  Google Scholar 

  36. Scheck, F.: Mechanics. From Newton’s Laws to Deterministic Chaos, 2nd edn. Springer, Berlin (1994)

    Google Scholar 

  37. Shampine, L.F., Reichelt, M.W., Kierzenka, J.A.: Solving index-I DAEs in Matlab and Simulink. SIAM Rev. 41(3), 538–552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Schutte, A., Udwadia, F.: New approach to the modeling of complex multibody dynamical systems. J. Appl. Mech. 78, 021018 (2011)

    Article  Google Scholar 

  39. Simeon, B.: Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  40. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. A, Math. Phys. Eng. Sci. 462, 2097–2117 (2006)

    Article  MathSciNet  Google Scholar 

  41. Udwadia, F.E., Schutte, A.D.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)

    Article  Google Scholar 

  42. Wojtyra, M.: Joint reaction in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44, 2265–2278 (2009)

    Article  MATH  Google Scholar 

  43. Yen, J.: Constrained equations of motion in multibody dynamics as ODEs on manifolds. SIAM J. Numer. Anal. 30(2), 553–568 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zimmer, G., Meier, J.: On observing nonlinear descriptor systems. Syst. Control Lett. 32, 43–48 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Appendices

Appendix A: The Mangasarian–Fromovitz Constraint Qualifications (MFCQ) [19, pp. 17, 252]

Let \(K=\{x \in \mathbb {R}^{n} : h(x) \geq0\}\), where \(h: \mathbb {R}^{n} \rightarrow \mathbb {R}^{m}\) is continuously differentiable, and K is not necessarily convex. Suppose that there exists a vector \(v \in \mathbb {R}^{n}\) such that ∇h i (x)T v>0 for all \(i \in\mathcal{ I}(x)=\{i : h_{i}(x) =0\}\). Then the tangent cone to K at x, defined as the dual of the normal cone in (14) is equal to the linearization cone \(\{z \in \mathbb {R}^{n} : z^{\mathrm{T}}\nabla h_{i}(x) \geq0,\ \mbox{for all} i \in\mathcal{I}(x)\}\).

Appendix B: The chain rule of convex analysis

Theorem 1

[35, Theorem 23.9]

Let f(x)=h(Ax) where h(⋅) is a proper convex function on \(\mathbb {R}^{m}\) and A is a linear transformation from \(\mathbb {R}^{n}\) to \(\mathbb {R}^{m}\). Then if h(⋅) is polyhedral and Im(A) contains a point of dom(h), one has ∂f(x)=A T ∂h(Ax), for all x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brogliato, B., Goeleven, D. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst Dyn 35, 39–61 (2015). https://doi.org/10.1007/s11044-014-9437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9437-4

Keywords

Navigation