Skip to main content
Log in

Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses some important issues for multibody dynamics; issues that are basic and really not too difficult to solve, but rarely considered in the literature. The aim of this paper is to contribute to the resolution and clarification of these topics in multibody dynamics. There are many formulations for determining the equations of motion in constrained multibody systems. This paper will focus on three of the most important methods: the Lagrange equations of the first kind, the null space method and the Maggi equations. In all cases we consider singular inertia matrices and redundant constraint equations. We assume that the inertia matrix is positive-semidefinite (symmetric) and that the constraint equations may be redundant but always consistent. It is demonstrated that the aforementioned dynamic formulations lead to the same three mathematical conditions of existence and uniqueness of solutions, conditions that have at the same time a clear physical meaning. We conclude that the mathematical problem always has a solution if the physical problem is well conditioned. This paper also addresses the problem of determining the constraint forces in the case of redundant constraints. This problem is examined from a broad perspective. We will present several examples and a simple method to find practical solutions in cases where the forces of constraint are undetermined. The method is based on the weighted minimum norm condition. A physical interpretation of this minimum norm condition is provided in detail for all examples. In some cases a comparison with the results obtained by considering flexibility is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3, 011004 (2008)

    Article  Google Scholar 

  2. García de Jalón, J., Bayo, E.: Kinematic and Dynamic Simulation of Multi-Body Systems—The Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  3. Negrut, D., Serban, R., Potra, F.A.: A topology based approach for exploiting sparsity in multibody dynamics. Joint formulation. Mech. Struct. Mach. 25, 221–241 (1997). doi:10.1080/08905459708905288

    Article  Google Scholar 

  4. Serban, R., Negrut, D., Haug, E.J., Potra, F.A.: A topology based approach for exploiting sparsity in multibody dynamics in Cartesian formulation. Mech. Struct. Mach. 25, 379–396 (1997). doi:10.1080/08905459708905295

    Article  Google Scholar 

  5. von Schwerin, R.: Multibody System Simulation: Numerical Methods, Algorithms and Software. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  6. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). doi:10.1017/S0962492904000212

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972). doi:10.1016/0045-7825(72)90018-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Ascher, U.M., Chin, H., Reich, S.: Stabilization of DAEs and invariant manifolds. Numer. Math. 67, 131–149 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Flores, P., Machado, M., Seabra, E., Tavares da Silva, M.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6 (2011). doi:10.1115/1.4002338

  10. Lubich, C.: Extrapolation integrators for constrained multibody systems. Impact Comput. Sci. Eng. 3, 213–234 (1991). doi:10.1016/0899-8248(91)90008-I

    Article  MathSciNet  MATH  Google Scholar 

  11. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection method for constrained multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996). doi:10.1007/BF01833296

    Article  MathSciNet  Google Scholar 

  12. Liang, C.G., Lance, G.M.: A differentiable null space method for constrained dynamic analysis. J. Mech. Transm. Autom. Des. 109, 405–411 (1987)

    Article  Google Scholar 

  13. Mani, N.K., Haug, E.J., Atkinson, K.E.: Application of singular value decomposition for analysis of mechanical system dynamics. J. Mech. Transm. Autom. Des. 107, 82–87 (1984)

    Article  Google Scholar 

  14. Kim, S.S., Vanderploeg, M.J.: QR decomposition for state space representation of constrained mechanical dynamical systems. J. Mech. Transm. Autom. Des. 108, 183–188 (1986)

    Article  Google Scholar 

  15. Wehage, R., Haug, E.J.: Generalized coordinate partitioning for dimension reduction in analysis of constrained mechanical systems. J. Mech. Des. 104, 247–255 (1982)

    Article  Google Scholar 

  16. Serna, M.A., Avilés, R., García de Jalón, J.: Dynamic analysis of plane mechanisms with lower pairs in basic coordinates. Mech. Mach. Theory 17, 397–403 (1982). doi:10.1016/0094-114X(82)90032-5

    Article  Google Scholar 

  17. Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  18. Udwadia, F.E., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multibody dynamics. Proc. R. Soc. Lond. Ser. A 462, 2097–2117 (2006). doi:10.1098/rspa.2006.1662

    Article  MathSciNet  MATH  Google Scholar 

  19. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Harcourth Brace Jovanovich, San Diego (1988)

    Google Scholar 

  20. Wojtyra, M.: Joint reaction forces in multibody systems with redundant constraints. Multibody Syst. Dyn. 14, 23–46 (2005). doi:10.1007/s11044-005-5967-0

    Article  MathSciNet  MATH  Google Scholar 

  21. Frączek, J., Wojtyra, M.: Redundant constraints reactions in rigid MBS with Coulomb friction in joints. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Milan, Italy (2007)

    Google Scholar 

  22. Wojtyra, M.: Joint reactions in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44, 2265–2278 (2009). doi:10.1016/j.mechmachtheory.2009.07.008

    Article  MATH  Google Scholar 

  23. Frączek, J., Wojtyra, M.: Joint reactions solvability in spatial MBS with friction and redundant constraints. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Warsaw, Poland (2009)

    Google Scholar 

  24. Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46, 312–334 (2011). doi:10.1016/j.mechmachtheory.2010.11.003

    Article  MATH  Google Scholar 

  25. Wojtyra, M., Frączek, J.: Joint reactions in overconstrained rigid or flexible body mechanisms. In: Proc. of the ECCOMAS Thematic Conf. on Multibody Dynamics, Brussels, Belgium (2011)

    Google Scholar 

  26. Wojtyra, M., Frączek, J.: Comparison of selected methods of handling redundant constraints in multibody system simulations. J. Comput. Nonlinear Dyn. 8, 021007 (2013). doi:10.1115/1.4006958

    Article  Google Scholar 

  27. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8, 141–159 (2002). doi:10.1023/A:1019581227898

    Article  MathSciNet  MATH  Google Scholar 

  28. Ruzzeh, B., Kövecses, J.: A penalty formulation for dynamic analysis of redundant mechanical systems. J. Comput. Nonlinear Dyn. 6, 021008 (2011)

    Article  Google Scholar 

  29. González, F., Kövecses, J.: Use of penalty formulations in the dynamic simulation and analysis of redundantly constrained multibody systems. Multibody Syst. Dyn. (2012). doi:10.1007/s11044-012-9322-y

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Economy and Competitiveness of Spain under the Research Project TRA2009-14513-C02-01 (OPTIVIRTEST). The authors also thank Profs. G. Sansigre and J. Martin for their help with some of the algebraic proofs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. García de Jalón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García de Jalón, J., Gutiérrez-López, M.D. Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst Dyn 30, 311–341 (2013). https://doi.org/10.1007/s11044-013-9358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9358-7

Keywords

Navigation