Skip to main content
Log in

Lagrangian mechanics of overparameterized systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Common methods to model the motion of mechanical systems include minimal coordinates and redundant coordinates. Classical presentations of Lagrangian mechanics have focused on these coordinate descriptions. However, sometimes an alternative type of description using overparameterized coordinates is more suitable, in order to avoid coordinate singularities or to simplify the equations of motion. Examples in astrodynamics include the Euler parameters for attitude dynamics and the orbital elements of the two-body problem. This paper investigates issues involved with these descriptions. For these system descriptions the mass matrix is singular, and Lagrange’s equations do not provide a unique solution for the generalized accelerations. A set of selective constraints are applied to determine a unique solution. One approach for selecting the constraints is to select holonomic constraints. These constraints serve a fundamentally different role from the redundant-coordinate constraints, which are applied while deriving the equations of motion. Along with these constraints, initial-condition constraints on the generalized coordinates and generalized velocities are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baruh, H.: Analytical Dynamics. McGraw-Hill, New York (1999). Sect. 4.2, 4.5, 4.7 & 4.9-10

    Google Scholar 

  2. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. Revised edn. AIAA, Washington (1999). p. 120

    MATH  Google Scholar 

  3. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79(4), 444–473 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ginsberg, J.H.: Advanced Engineering Dynamics, 2nd edn. Cambridge University Press, Cambridge (1995). Sect. 6.1, 6.4, 6.6 & 7.1

    MATH  Google Scholar 

  6. Goldstein, H., Poole, C., Safko, J.: Classical Mechanics, 3rd edn. Addison-Wesley, Reading (2002). Sect. 1.4 & 2.4

    Google Scholar 

  7. Greenwood, D.T.: Principles of Dynamics. Prentice Hall, Englewood Cliffs (1988). Sect. 6-2, 6-5, 6-6 & 6-7

    Google Scholar 

  8. Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003). Sect. 1.3

    Google Scholar 

  9. Isidori, A.: Nonlinear Control Systems, 2nd edn. Springer, Berlin (1989). Sect. 1.4

    MATH  Google Scholar 

  10. Junkins, J.L., Turner, J.D.: Optimal Spacecraft Rotational Maneuvers. Elsevier, Amsterdam (1986). Sect. 3.2.4

    Google Scholar 

  11. Kane, T.R., Levinson, D.A.: Dynamics: Theory and Applications. McGraw-Hill, New York (1985). Sect. 2.14

    Google Scholar 

  12. Marion, J.B., Thornton, S.T.: Classical Dynamics of Particles and Systems. Harcourt Brace & Company, San Diego (1995). Sect. 7.3-5

    Google Scholar 

  13. Meirovitch, L.: Methods of Analytical Dynamics. McGraw-Hill, New York (1970). Sect. 2.8

    Google Scholar 

  14. Moon F.S.: Applied Dynamics. Wiley-Interscience, New York (1998). p. 113

    Book  MATH  Google Scholar 

  15. Nikravesh, P.E., Wehage, R.A., Kwon, O.K.: Euler parameters in computational kinematics and dynamics. J. Mech. Transm. Autom. Des. 107, 358–369 (1985)

    Article  Google Scholar 

  16. O’Reilly, O.M., Varadi, P.C.: Hoberman’s sphere, Euler parameters and Lagrange’s equations. J. Elast. 56, 171–180 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Papastavridis, J.G.: Tensor Calculus and Analytical Dynamics. CRC Press, Boca Raton (1999). Sect. 6.7

    Google Scholar 

  18. Papastavridis, J.G.: Analytical Mechanics. Oxford University Press, Oxford (2002). Sect. 2.5

    MATH  Google Scholar 

  19. Schaub, H., Junkins, J.L.: Analytical Mechanics of Space Systems. AIAA, Washington (2003). Sect. 5.3-4

    Google Scholar 

  20. Stiefel, EL, Scheifele, G.: Linear and Regular Celestial Mechanics. Springer, Berlin (1971). Sect. 9

    MATH  Google Scholar 

  21. Strang, G.: Linear Algebra and Its Applications, 3rd edn. Saunders, Philadelphia (1988). p. 96

    Google Scholar 

  22. Stuelpnagel, J.: On the parameterization of the three-dimensional rotation group. SIAM Rev. 6(4), 422–430 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  23. Udwadia, FE, Kalaba, RE: Analytical Dynamics. Cambridge University Press, Cambridge (1996). Chaps. 3 & 4

    Book  Google Scholar 

  24. Vadali, S.R.: On the Euler parameter constraint. J. Astronaut. Sci. 36(3), 259–265 (1988)

    MathSciNet  Google Scholar 

  25. Vallee, C., Hamdouni, A., Isnard, F., Fortune, D.: The equations of motion of a rigid body without parameterization of rotations. J. Appl. Math. Mech. 63(1), 25–30 (1999)

    Article  MathSciNet  Google Scholar 

  26. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Cambridge University Press, Cambridge (1970). Sect. 24 & 87

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Sinclair.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurtado, J.E., Sinclair, A.J. Lagrangian mechanics of overparameterized systems. Nonlinear Dyn 66, 201–212 (2011). https://doi.org/10.1007/s11071-010-9921-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9921-1

Keywords

Navigation