Skip to main content
Log in

Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the following problem is analyzed: Given a frictionless Lagrangian system subject to complementarity relations (due to a set of unilateral constraints) that define a linear complementarity problem whose matrix is the so-called Delassus’ matrix, study the influence of a set of bilateral constraints added to the dynamics on the Delassus’ matrix. Two main paths are followed: the Lagrange multipliers method and the reduced coordinates method. The link with optimization (the Gauss’ principle of mechanics) and the case of impacts, are also examined. The kinetic angles between the bilateral and the unilateral constraints are used to study the definiteness of the Delassus’ matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. One also says functionally independent.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Arponen, T.: Regularization of constraint singularities in multibody systems. Multibody Syst. Dyn. 6, 355–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Anal. 154(3), 199–274 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, D.S.: Matrix, Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  5. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8, 141–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brogliato, B.: Nonsmooth Mechanics, 2nd edn. Springer, London (1999)

    Book  MATH  Google Scholar 

  7. Cottle, R.W.: On a problem in linear inequalities. J. Lond. Math. Soc. 43, 378–384 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem, Computer Science and Scientific Computing. Academic Press, New York (1992)

    Google Scholar 

  9. Delassus, E.: Mémoire sur la théorie des liaisons finies unilatérales. Ann. Sci. Ec. Norm. Super., Ser. 3 34, 95–179 (1917)

    MathSciNet  MATH  Google Scholar 

  10. Dzonou, R., Monteiro Marques, M.D.P.: A sweeping process approach to inelastic contact problems with general inertia operators. Eur. J. Mech. A, Solids 26(3), 474–490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dzonou, R., Monteiro Marques, M.D.P., Paoli, L.: A convergence result for a vibro-impact problem with a general inertia operator. Nonlinear Dyn. 58(1–2), 361–384 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Series in Operations Research, vol. I. Springer, New York (2003)

    Google Scholar 

  13. Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  14. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18(4), 653–677 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-smooth Systems. Lecture Notes in Applied and Computational Mechanics, vol. 1. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  16. Glocker, C.: Concepts for modeling impacts without friction. Acta Mech. 168(1–2), 1–19 (2004)

    Article  MATH  Google Scholar 

  17. Glocker, C.: An introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids. CISM Courses and Lectures, vol. 485, pp. 45–102. Springer, New York (2006)

    Chapter  Google Scholar 

  18. Glocker, C., Aeberhard, U.: The geometry of Newton’s cradle. In: Alart, P., Maisonneuve, O., Rockafellar, R.T. (eds.) Nonsmooth Mechanics and Analysis. Theoretical and Numerical Advances. AMMA, vol. 12, pp. 185–194. Springer, Berlin (2006)

    Chapter  Google Scholar 

  19. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  20. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, New York (1985)

    MATH  Google Scholar 

  21. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    MATH  Google Scholar 

  22. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  23. Leine, R.I., van de Wouw, N.: Stability properties of equilibrium sets of non-linear mechanical systems with dry friction and impact. Nonlinear Dyn. 51, 551–583 (2008)

    Article  MATH  Google Scholar 

  24. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mabrouk, M.: A unified variational model for the dynamics of perfect unilateral constraints. Eur. J. Mech. A, Solids 17, 819–842 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  27. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of constrained robots. IEEE Trans. Autom. Control 33(5), 419–426 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Monteiro Marques, M.D.P.: Differential Inclusions in Non-smooth Mechanical Problems: Shocks and Dry Friction. Birkhäuser, Boston (1993)

    Google Scholar 

  29. Moreau, J.J.: Les liaisons unilatérales et le principe de Gauss. C. R. Acad. Sci. Paris 256(4), 871–874 (1963)

    MathSciNet  Google Scholar 

  30. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4(1), 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  31. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. International Center for Mechanical Sciences, Springer, Berlin (1988)

    Google Scholar 

  32. Müller, A.: A Lie-group formulation of kinematics and dynamics of constrained MBS and its application to analytical mechanics. Multibody Syst. Dyn. 9, 311–352 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Müller, A.: A conservative elimination procedure for permanently redundant closure constraints in MBS-models with relative coordinates. Multibody Syst. Dyn. 16, 309–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Neto, M.A., Ambrosio, J.: Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Syst. Dyn. 10, 81–105 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Or, Y., Rimon, E.: Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn. 67(2), 1647–1668 (2012)

    Article  MATH  Google Scholar 

  36. Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. (M3AS) 15(1), 1–41 (2005)

    Article  MathSciNet  Google Scholar 

  37. Paoli, L.: Time-stepping approximation of rigid-body dynamics with perfect unilateral constraints. I: The inelastic impact case. II: The partially elastic impact case. Arch. Ration. Mech. Anal. 198(2), 457–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Paoli, L.: A proximal-like method for a class of second order measure-differential inclusions describing vibro-impact problems. J. Differ. Equ. 250, 476–514 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Paoli, L., Schatzman, M.: Mouvement à nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d’énergie. Modèl. Math. Anal. Numér. 27(6), 673–717 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  41. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics (1970)

    MATH  Google Scholar 

  42. Schatzman, M.: A class of nonlinear differential equations of second order in time. Nonlinear Anal. 2, 355–373 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  44. Studer, C.: Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-smooth Dynamics. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was performed with the support of the NSFC/ANR project Multiple Impact, ANR-08-BLAN-0321-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Appendix: Useful mathematical results

Appendix: Useful mathematical results

1.1 A.1 Theorem 3.1.7 in [8] (excerpts)

Theorem 2

Let M∈ℝn×n be positive semidefinite, and let q∈ℝn be arbitrary. The following hold:

  1. (a)

    If z 1 and z 2 are two solutions of the LCP(M,q) then (z 1)T(q+Mz 2)=(z 2)T(q+Mz 1).

  2. (d)

    If M is symmetric (as well as positive semidefinite) then Mz 1=Mz 2 for any two solutions z 1 and z 2.

1.2 A.2 Theorem 3.8.6 in [8]

Theorem 3

Let M∈ℝn×n be copositive and let q∈ℝn be given. If the implication[0≤vMv≥0]⇒[v T q≥0] is valid, then the LCP(M,q) is solvable.

Notice that the implication can also be written as \(q \in Q_{M}^{*}\), with the notation of Remark 3.

1.3 A.3 Square root calculation

Consider the matrix whose off-diagonal terms mimic the inertial couplings between the constraints. Since we can rewrite , calculating the square root of A boils down to calculating the square root of the sum of two matrices: a diagonal matrix that mimics the matrices D h and D g (which do no depend on the inertial coupling parameter ϵ), and a matrix with the off-diagonal terms and zero diagonal. Then lengthy but straightforward calculations yield

$$ A^{-1}=\frac{1}{1-\epsilon^{2}}\left (\begin{array}{c@{\quad}c} 1 & -\epsilon \\ -\epsilon & 1 \end{array} \right )= \left (\begin{array}{c@{\quad}c} 1 & -\epsilon \\ -\epsilon & 1 \end{array} \right )+\mathcal{O}\bigl(\epsilon^{2}\bigr) $$
(87)

and:

$$ A^{-\frac{1}{2}}=I+\left (\begin{array}{c@{\quad}c} 0 & -\frac{\epsilon}{2} \\ -\frac{\epsilon}{2} & 0 \end{array} \right ) + \left (\begin{array}{c@{\quad}c} \frac{3\epsilon^{2}}{8} & 0 \\ 0 & \frac{3\epsilon^{2}}{8} \end{array} \right ) + \mathcal{O}\bigl(\epsilon^{3}\bigr), $$
(88)

where \(\mathcal{O}(\epsilon^{n})\) denotes terms of degree higher or equal to n, and the approximations are valid if |ϵ|<1. This simple example demonstrates that the approximations in Assumption 3 are not unrealistic.

1.4 A.4 Dorn’s duality and converse duality theorems

Theorem 4

[26, Theorems 8.2.4, 8.2.6] Let Q be a positive semidefinite and symmetric matrix. Consider the two quadratic programs:

$$ \left \{\begin{array}{l} \min \frac{1}{2} z^{T}Qz+b^{T}z \\ \\ \mbox{\textit{subject to}:}\ Az \geq c \end{array} \right . $$
(89)

and

$$ \left \{\begin{array}{l} \min \frac{1}{2} z^{T}Qz-c^{T} w \\ \\ \mbox{\textit{subject to}:}\ A^{T} w-Qz = b,\quad w \geq 0. \end{array} \right . $$
(90)

Then:

  • If \(\bar{z}\) solves the program (89), then there exists \(\bar{w}\) such that \((\bar{z},\bar{w})\) solves the program (90). Moreover, the two extrema are equal.

  • If \((\bar{z},\bar{w})\) solves the program (90), then there exists \(\hat{z}\) with \(\hat{z}-\bar{z} \in \mathcal{N}(Q)\) such that \(\hat{z}\) solves the program (89).

1.5 A.5 Theorem 2.4.3 in [4]

Theorem 5

Let A∈ℝn×m. Then \(\mathcal{R}(A)^{\perp}=\mathcal{N}(A^{T})\), \(\mathcal{R}(A)=\mathcal{R}(AA^{T})\), and \(\mathcal{N}(A)=\mathcal{N}(A^{T}A)\).

1.6 A.6 Theorem 1 in [20] p. 194

Theorem 6

If A is idempotent then IA is idempotent, \(\mathcal{R}(I-A)=\mathcal{N}(A)\), and \(\mathcal{N}(I-A)=\mathcal{R}(A)\).

1.7 A.7 Definition 3.1.1 in [4]

Definition 1

Let A∈ℝn×n. Then A is a projector if A is symmetric and idempotent.

1.8 A.8 Proposition 8.1.2 in [4]

Proposition 20

Let A and B be symmetric n×n matrices, and let S∈ℝm×n. If AB, then SAS TSBS T. If SAS TSBS T and rank(S)=n, then AB.

1.9 A.9 Exercise 8 in [20] p. 218

This exercise is reformulated here as a lemma for convenience.

Lemma 7

Let A be symmetric. Then the matrix I+ϵA is positive definite for sufficiently small real numbers ϵ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogliato, B. Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems. Multibody Syst Dyn 29, 289–325 (2013). https://doi.org/10.1007/s11044-012-9317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9317-8

Keywords

Navigation