Skip to main content
Log in

Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Quasi-velocities computed with the kinetic metric of a Lagrangian system are introduced, and the quasi-Lagrange equations are derived with and without friction. This is shown to be very well suited to systems subject to unilateral constraints (hence varying topology) and impacts. Energetical consistency of a generalized kinematic impact law is carefully studied, both in the frictionless and the frictional cases. Some results concerning the existence and uniqueness of solutions to the so-called contact linear complementarity problem, when friction is present, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. This is the set denoted \(\mathcal{T}_{C}^{\perp}\) in [35, Eq. (5.11)].

  2. Notice that the assumption that the constraints are functionally independent, guarantees that the norms \(\|\nabla h_{i}(q)\|_{\tiny{M^{-1}}}\) never vanish, so \(\operatorname {diag}(\|\nabla h_{i}(q)\|_{\tiny{M^{-1}}})\) is positive definite.

  3. The Delassus’ operator is sometimes called the fundamental matrix [12].

  4. Clearly, if the vectors t q,i are chosen mutually orthogonal then D t(q)=I.

  5. For simplicity of notation the dependence of p′ on q is not recalled.

  6. This is equivalently stated as \(\dot{q}(t^{-}) \in - T_{\varPhi_{u}}(q(t))\) [69].

  7. \(x^{T}\mathcal{E}_{\mathrm{nn}}^{T}G^{-1}(q)x=x^{T} (\mathcal{E}_{\mathrm{nn}}^{T}G^{-1}(q))^{T}x=x^{T}G^{-1}(q)\mathcal{E}_{\mathrm{nn}}x\) for any vector \(x \in \mathbb {R}^{p}\).

  8. Necessary and sufficient conditions for co-positivity of A=A T are a 11⩾0, a 22⩾0, \(a_{12}+\sqrt{a_{11}a_{22}} \geqslant 0\) [39].

  9. Recall that q is a constant during the shock, so that all the matrices that depend on q only are also constant. Thus, P and H may depend on q as well.

  10. The idea of doing such a change of coordinates was first introduced in [17] in the context of maximal monotone differential inclusions.

  11. Also called an M-matrix [25, p. 222].

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    Google Scholar 

  2. Aghili, F.: A unified approach for inverse and direct dynamics of constrained multibody systems based on linear projection operator: applications to control and simulation. IEEE Trans. Robot. 21(5), 834–849 (2005)

    Article  Google Scholar 

  3. Aghili, F.: Dynamics and control of constrained mechanical systems in terms of reduced quasi-velocities. In: IEEE Int. Conference on Robotics and Automation, Pasaneda, USA, 19–23 May 2008, pp. 1225–1232 (2008)

    Google Scholar 

  4. Aghili, F.: Control of redundant mechanical systems under equality and inequality constraints on both input and constraint forces. J. Comput. Nonlinear Dyn. 6, 031013 (2011)

    Article  Google Scholar 

  5. Appel, P.: Traité de Mécanique Rationnelle, Tome 2: Dynamique des Systèmes–Mécanique Analytique, 3rd edn. Gauthier-Villars, Paris (1911)

    Google Scholar 

  6. Ballard, P.: The dynamics of discrete mechanical systems with perfect unilateral constraints. Arch. Ration. Mech. Appl. 154, 199–274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernstein, D.S.: Matrix, Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    Google Scholar 

  8. Betsch, P.: The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I. Holonomic constraints. Comput. Methods Appl. Mech. Eng. 194, 5159+5190 (2005)

    Article  MathSciNet  Google Scholar 

  9. Blajer, W.: A geometric unification of constrained system dynamics. Multibody Syst. Dyn. 1, 1–21 (1997)

    Article  MathSciNet  Google Scholar 

  10. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. Z. Angew. Math. Mech. 81(4), 247–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bowling, A., Montrallo Flickinger, D., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22(1), 27–45 (2009). doi:10.1007/s11044-009-9147-5

    Article  MATH  MathSciNet  Google Scholar 

  12. Brauchli, H.: Mass-orthogonal formulation of equations of motion for multibody systems. Z. Angew. Math. Phys. 42, 169–182 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Braun, D.J., Goldfarb, M.: Simulation of constrained mechanical systems. Part I. An equation of motion. J. Appl. Mech. 79, 041017 (2012)

    Article  Google Scholar 

  14. Brogliato, B.: Nonsmooth Impact Mechanics: Models, Dynamics and Control. Lecture Notes in Control and Information Sciences, vol. 220. Springer, Berlin (1996)

    MATH  Google Scholar 

  15. Brogliato, B., Niculescu, S., Orhant, P.: On the control of finite-dimensional mechanical systems with unilateral constraints. IEEE Trans. Autom. Control 42(2), 200–215 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Communications and Control Engineering, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  17. Brogliato, B.: Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings. Systems and Control Letters 51(5), 343–353 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  18. Brogliato, B., Lozano, R., Maschke, B., Egeland, O.: Dissipative Systems Analysis and Control. Communications and Control Engineering, 2nd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  19. Brogliato, B., Zhang, H., Liu, C.: Analysis of a generalized kinematic impact law for multibody-multicontact systems, with application to the planar rocking block and chains of balls. Multibody Syst. Dyn. 27, 351–382 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Brogliato, B.: Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems. Multibody Syst. Dyn. 29(3), 289–325 (2013). doi:10.1007/s11044-012-9317-8

    Article  MATH  MathSciNet  Google Scholar 

  21. Buttazzo, G., Percivale, D.: On the approximation of the elastic bounce problem on Riemannian manifolds. J. Differ. Equ. 47, 227–275 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Caselli, F., Frémond, M.: Collision of three balls on a plane. Comput. Mech. 43, 743–754 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chen, X., Xiang, S.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18(4), 1250–1265 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cholet, C.: Chocs de solides rigides. Ph.D. thesis, University Paris 6, No. 98 PA06 6069 (1998)

  25. Cottle, R.W., Pang, J.S., Stone, R.E.: In: The Linear Complementarity Problem. SIAM Classics in Applied Mathematics, vol. 60 (2009)

    Chapter  Google Scholar 

  26. Duindam, V., Stramigioli, S.: Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Trans. Robot. 24(3), 517–526 (2008)

    Article  Google Scholar 

  27. Dzonou, R., Monteiro Marques, M.D.P., Paoli, L.: A convergence result for a vibro-impact problem with a general inertia operator. Nonlinear Dyn. 58, 361–384 (2009). doi:10.1007/s11071-009-9484-1

    Article  MATH  MathSciNet  Google Scholar 

  28. Frémond, M.: Rigid bodies collisions. Phys. Lett. A 204, 33–41 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Frémond, M.: Non-smooth Thermomechanics. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  30. From, P.J.: An explicit formulation of singularity-free dynamic equations of mechanical systems in Lagrangian form. Part one. Single rigid bodies. Part two. Multibody systems. Model. Identif. Control 33(2), 45–68 (2012)

    Article  Google Scholar 

  31. Gale, D.: An indeterminate problem in classical mechanics. Am. Math. Mon. 59(5), 291–295 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  32. Gantmacher, F.: Lectures in Analytical Mechanics. MIR, Moscow (1970)

    Google Scholar 

  33. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18, 653–677 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. Glocker, C.: Set-Valued Force Laws. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  35. Glocker, C.: An introduction to impacts. In: Haslinger, J., Stavroulakis, G. (eds.) Nonsmooth Mechanics of Solids. CISM Courses and Lectures, vol. 485, pp. 45–102. Springer, Wien (2006)

    Chapter  Google Scholar 

  36. Glocker, C.: Energetic consistency conditions for standard impacts. Multibody Syst. Dyn. 29(1), 77–117 (2013). doi:10.1007/s11044-012-9316-9

    Article  MATH  MathSciNet  Google Scholar 

  37. Glocker, C., Pfeiffer, F.: Multiple impacts with friction in rigid multi-body systems. Nonlinear Dyn. 7, 471–497 (1995)

    Article  MathSciNet  Google Scholar 

  38. Herman, P., Kozlowski, K.: A survey of equations of motion in terms of inertial quasi-velocities for serial manipulators. Arch. Appl. Mech. 76, 579–614 (2006)

    Article  MATH  Google Scholar 

  39. Hiriart Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52(4), 593–629 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hiriart Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  41. Ivanov, A.P.: Impacts in a system with certain unilateral couplings. J. Appl. Math. Mech. 51(4), 43–442 (1987)

    Article  Google Scholar 

  42. Ivanov, A.P.: On multiple impact. J. Appl. Math. Mech. 59(6), 887–902 (1995)

    Article  MATH  Google Scholar 

  43. Ivanov, A.P.: Singularities in the dynamics of systems with non-ideal constraints. J. Appl. Math. Mech. 67(2), 185–192 (2003)

    Article  MathSciNet  Google Scholar 

  44. Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 571–584 (1995)

    Article  Google Scholar 

  45. Junkins, J.L., Schaub, H.: An instantaneous eigenstructure quasivelocity formulation for nonlinear multibody dynamics. J. Astronaut. Sci. 45, 279–295 (1997)

    MathSciNet  Google Scholar 

  46. Kane, T.R., Wang, C.F.: On the derivation of equations of motion. J. Soc. Ind. Appl. Math. 13(2), 487–492 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  47. Kane, T.R., Levinson, D.A.: The use of Kane’s dynamical equations in robotics. Int. J. Robot. Res. 2(3), 3–21, Fall (1983)

    Article  Google Scholar 

  48. Khulief, Y.A.: Modeling of impact in multibody systems: an overview. J. Comput. Nonlinear Dyn. 8, 021012 (2013)

    Article  Google Scholar 

  49. Kovecses, J., Cleghorn, W.L.: Finite and impulsive motion of constrained mechanical systems via Jourdain’s principle: discrete and hybrid parameter models. Int. J. Non-Linear Mech. 38, 935–956 (2003)

    Article  Google Scholar 

  50. Kozlov, V.V., Treshchev, D.V.: Billiards: A Genetic Introduction to the Dynamics of Systems with Impacts. American Math. Soc., Providence (1991)

    Google Scholar 

  51. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  52. Lankarani, H.M., Pereira, M.F.O.S.: Treatment of impact with friction in planar multibody mechanical systems. Multibody Syst. Dyn. 6, 203–227 (2001)

    Article  MATH  Google Scholar 

  53. Lee, D., Li, P.Y.: Passive decomposition of mechanical systems with coordinate requirements. IEEE Trans. Autom. Control 58(1), 230–235 (2013). doi:10.1109/TAC.2012.2203062

    Article  MathSciNet  Google Scholar 

  54. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21, 869–896 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  55. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  56. Lewis, A.D.: Simple mechanical control systems with constraints. IEEE Trans. Autom. Control 45(8), 1420–1436 (2000)

    Article  MATH  Google Scholar 

  57. Liu, G., Li, Z.: A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Trans. Robot. Autom. 18(4), 574–587 (2002)

    Article  Google Scholar 

  58. Liu, C.Q., Huston, R.L.: Another form of equations of motion for constrained multibody systems. Nonlinear Dyn. 51, 465–470 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  59. Loduha, T.A., Ravani, B.: On first-order decoupling of equations of motion for constrained dynamical systems. J. Appl. Mech. 62, 216–222 (1995)

    Article  MATH  Google Scholar 

  60. Lubarda, V.A.: The bounds on the coefficients of restitution for the frictional impact of rigid pendulum against a fixed surface. J. Appl. Mech. 77, 011006 (2010)

    Article  Google Scholar 

  61. Lurie, A.I.: Analytical Mechanics. Springer, Berlin (2002). (reprint of the 1961 edition)

    Book  MATH  Google Scholar 

  62. Mabrouk, M.: A unified variational model for the dynamics of perfect unilateral constraints. Eur. J. Mech. A, Solids 17(5), 819–842 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  63. Matrosov, V.M., Finogenko, I.A.: Right-hand solutions of the differential equations of dynamics for mechanical systems with sliding friction. J. Appl. Math. Mech. 59(6), 837–844 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  64. McClamroch, N.H., Wang, D.: Feedback stabilization and tracking of constrained robots. IEEE Trans. Autom. Control 33(5), 419–426 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  65. Modarres Najafabadi, S.A., Kovecses, J., Angeles, J.: Generalization of the energetic coefficient of restitution for contacts in multibody systems. J. Comput. Nonlinear Dyn. 3, 041008 (2008)

    Article  Google Scholar 

  66. Modarres Najafabadi, S.A., Kovecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20, 163–176 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  67. Morarescu, C.I., Brogliato, B.: Trajectory tracking control of multiconstraint complementarity Lagrangian systems. IEEE Trans. Autom. Control 55(6), 1300–1313 (2010)

    Article  MathSciNet  Google Scholar 

  68. Moreau, J.J.: Liaisons unilatérales sans frottement et chocs inélastiques. Frictionless unilateral constraints and inelastic shocks. C. R. Séances Acad. Sci., Sér. 2 Méc.-Phys. Chim. Sci. Univers Sci. Terre 296(19), 1473–1476 (1983)

    MATH  MathSciNet  Google Scholar 

  69. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. International Center for Mechanical Sciences, Springer, Berlin (1988)

    Chapter  Google Scholar 

  70. Moreau, J.J.: Some numerical methods in multibody dynamics: application to granular materials. Eur. J. Mech. A, Solids 13(4), 93–114 (1994)

    MATH  MathSciNet  Google Scholar 

  71. Neimark, J.I., Fufaev, N.A.: Dynamics of Non-holonomic Systems. Am. Math. Soc., Providence (1972)

    Google Scholar 

  72. Nguyen, N.S., Brogliato, B.: Multiple Impacts in Dissipative Granular Chains. Lecture Notes in Applied and Computational Mechanics, vol. 72. Springer, Berlin (2013)

    Google Scholar 

  73. Pang, J.S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73, 199–226 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  74. Paoli, L.: Continuous dependence on data for vibro-impact problems. Math. Models Methods Appl. Sci. 15(1), 1–41 (2005)

    Article  MathSciNet  Google Scholar 

  75. Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41, 361–383 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. Payr, M.: An Experimental and Theoretical Study of Perfect Multiple Contact Collisions in Linear Chains of Bodies. Ph.D. thesis, ETH Zurich (2008)

  77. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New-York (1996)

    Book  MATH  Google Scholar 

  78. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics (1970)

    Google Scholar 

  79. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    MATH  Google Scholar 

  80. Rodriguez, A., Bowling, A.: Solution to indeterminate multipoint impact with frictional contact using constraints. Multibody Syst. Dyn. 28(4), 313–330 (2012). doi:10.1007/s11044-012-9307-x

    Article  MathSciNet  Google Scholar 

  81. Seghete, V., Murphey, T.: Variational solutions to simultaneous collisions between multiple rigid bodies. In: IEEE Int. Conf. on Robotics and Automation, Anchorage Convention District, Anchorage, Alaska, USA, 3–8 May 2010, pp. 2731–2738 (2010)

    Google Scholar 

  82. Seghete, V., Murphey, T.: Conditions for uniqueness in simultaneous impact with application to mechanical design. In: IEEE Int. Conf. on Robotics and Automation, RiverCentre, Saint Paul, Minnesota, USA, 14–18 May 2012, pp. 5006–5011 (2012)

    Google Scholar 

  83. Sun, Y.L.: The equations of motion of a system under the action of the impulsive constraints. Appl. Math. Mech. 9(1), 51–60 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  84. Towne, D.H., Hadlock, C.R.: One-dimensional collisions and Chebyshev polynomials. Am. J. Phys. 45(3), 255–259 (1977)

    Article  Google Scholar 

  85. Trinkle, J.C., Pang, J.S., Sudarsky, S., Lo, G.: On dynamic multi-rigid-body contact problems with Coulomb friction. Z. Angew. Math. Mech. 77(4), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  86. Yen, J., Petzold, L.R.: An efficient Newton-type iteration for the numerical solution of highly oscillatory constrained multbody dynamic systems. SIAM J. Sci. Comput. 19(5), 1513–1534 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  87. Zhang, H., Brogliato, B., Liu, C.: Study of the planar rocking-block dynamics with Coulomb friction: critical kinetic angles. J. Comput. Nonlinear Dyn. 8, 021002 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Appendices

Appendix A: Theorem 2.11 in [23]

We give here just an excerpt of this result, and two easy corollaries of it.

Theorem 3

Let \(M \in \mathbb {R}^{n \times n}\) be a positive definite matrix. Then every matrix

$$A \in \biggl\{A \mid \biggl\| \biggl(\frac{M+M^{T}}{2} \biggr)^{-1} \biggr\|_{2} \|M-A\|_{2} < 1 \biggr\} $$

is positive definite.

Corollary 2

Let D=P+N, where D, P, and N are n×n real matrices, and P>0, not necessarily symmetric. If

$$ \|N\|_{2} < \frac{1}{\| (\frac{P+P^{T}}{2} )^{-1}\|_{2}} $$
(88)

then D>0.

Proof

Follows from Theorem 3 with \(A \stackrel{\Delta}{=}D\) and \(M\stackrel{\Delta}{=} P\). □

Corollary 3

Let \(M \in \mathbb {R}^{n \times n}\) be a symmetric positive definite matrix. Let A=BM for some matrix B. If

$$\|M^{-1}\|_{2} \|M\|_{2} \|I-B\|_{2} < 1 $$

then A is positive definite.

Proof

Since M=M T applying Theorem 3 gives that ∥M −12MBM2<1 guarantees that A>0. Now from [7, Proposition 9.3.5] one has ∥MBM2⩽∥M2IB2: the result follows. □

Appendix B: Theorem 3.8.6 in [25]

Theorem 4

Let \(M \in \mathbb {R}^{n \times n}\) be a co-positive matrix, and let \(q \in \mathbb {R}^{n}\) be given. If the implication

$$\bigl[v \geqslant 0, Mv \geqslant 0, v^{T}Mv=0\bigr] \quad \Rightarrow \quad \bigl[v^{T}q \geqslant 0\bigr] $$

is valid, then the LCP: 0⩽λ+q⩾0 has a solution.

The implication is equivalently rewritten as \(q \in Q_{M}^{*}\).

Appendix C: Propositions 8.1.2 and 9.3.5 in [7]

Proposition 16

Let A and B be n×n symmetric real matrices, and S be an m×n real matrix. Then: (xi) if AB then SAS TSBS T; (xiii) if SAS TSBS T and rank(S)=n, then AB.

Proposition 17

Let A be an n×m and B an m×l matrices. If p∈[1,2], thenAB p ⩽∥A p B p .

Appendix D: Proof of (59)

Let us start from (58). Since R has full rank and using \(P\bar{G}(q)=\varGamma^{T}\) \((\Leftrightarrow \varGamma R^{-1}=\bar{G}^{T}R)\), this is equivalent to

$$ z-Rv\bigl(t^{-}\bigr) \in -R^{-1}\varGamma^{T} N_{W(q)}\bigl(\varGamma R^{-1}\bigl(z+R\varLambda v \bigl(t^{-}\bigr)\bigr)\bigr) $$
(89)

Let y=z+RΛv(t ). In view of the definition of \(\bar{W}(q)\), and since \(N_{\bar{W}(q)}(\cdot)=\partial \psi_{\bar{W}(q)}(\cdot)\), one has \(N_{\bar{W}(q)}(y) =\partial \psi_{\bar{W}(q)}(y)=(\varGamma R^{-1})^{T} \partial \psi_{W(q)}(\varGamma R^{-1}y)\), where the chain rule of convex analysis has been used. The expression in (60) is then a consequence of the fact that \(x-y \in -N_{K}(x) \Leftrightarrow x =\operatorname {proj}[K;y]\) for any vectors x, y, and convex set K of appropriate dimensions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogliato, B. Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst Dyn 32, 175–216 (2014). https://doi.org/10.1007/s11044-013-9392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9392-5

Keywords

Navigation