Skip to main content
Log in

Modeling planar slider-crank mechanisms with clearance joints in RecurDyn

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Revolute joints in applications always show clearance between pin and bushing due to manufacturing tolerances, the need of relative motion or progressing wear. Many researchers developed and investigated methodologies to calculate the dynamic behavior of mechanisms with such imperfect joints. Very often they use a simple slider-crank mechanism to test or demonstrate the capability of their approaches. In this paper, a methodology for simulating a slider-crank mechanism with an imperfect revolute joint in RecurDyn, a commercial multibody simulation tool, is presented. Therefore, a thorough investigation of existing contact, damping and friction force models as well as different ways of modeling revolute joints in RecurDyn was conducted. For the investigation of the damping models, a special program for calculating the model parameters for a given coefficient of restitution was developed. Only one damping model was capable of reproducing the experimental results, which were found in literature. Some characteristic results of the slider-crank mechanism are presented in a way that they can be compared to results in other papers. Thereby. a good correlation was achieved, demonstrating the capabilities of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

D :

hysteresis coefficient

E :

Young’s modulus [N/mm2]

E :

modified Young’s modulus [N/mm2]

R :

relative curvature

Q :

force [N]

\(\underline{b}\) :

vector between pin and bushing center

c :

diametric clearance [mm]

d :

damping coefficient

e :

coefficient of restitution

k :

stiffness coefficient [N/mm]

l :

length of bushing [mm]

m2,m3:

damping and indentation exponents in RecurDyn damping model

n :

stiffness exponent

r :

radius [mm]

Δr :

radius based clearance [mm]

v :

velocity [mm/s]

x,y :

parameters for definition of havsin-damping function

γ :

coefficient in Sjö’s friction law

δ :

penetration [mm]

μ :

coefficient of friction

ν :

Poisson’s ratio

0,1:

indices for value pairs

b :

bushing

f :

friction

i :

impact

max:

maximum

n :

normal

p :

pin

t :

tangential

CiC:

Circle-in-Circle contact

CoR:

Coefficient of Restitution

MBS:

MultiBody Simulation

References

  1. Erkaya, S., Uzmay, I.: A neural-genetic (NN-GA) approach for optimising mechanisms having joints with clearance. Multibody Syst. Dyn. 20, 69–83 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Su, Y., Chen, W., Tong, Y., Xie, Y.: Wear prediction of clearance joint by integrating multi-body kinematics with finite-element method. J. Eng. Tribol. 224, 815–823 (2010)

    Google Scholar 

  3. Khulief, Y., Shabana, A.: A continuous force model for the impact analysis of flexible multi-body systems. Mech. Mach. Theory 22, 213–224 (1987)

    Article  Google Scholar 

  4. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990)

    Article  Google Scholar 

  5. Lankarani, H.M., Nikravesh, P.E.: Continuous contact force models for impact analysis in multibody systems. Nonlinear Dyn. 5, 193–207 (1994)

    Google Scholar 

  6. Machado, M., Moreira, P., Flores, P., Lankarani, H.M.: Compliant contact force models in multibody dynamics: Evolution of the Hertz contact theory. Mech. Mach. Theory 53, 99–121 (2012)

    Article  Google Scholar 

  7. Stoenescu, E.D., Marghitu, D.B.: Dynamic analysis of a planar rigid-link mechanism with rotating slider joint and clearance. J. Sound Vib. 266, 394–404 (2003)

    Article  Google Scholar 

  8. Liu, T.S., Lin, Y.S.: Dynamic analysis of flexible linkages with lubricated joints. J. Sound Vib. 141, 193–205 (1990)

    Article  Google Scholar 

  9. Farahanchi, F., Shaw, S.W.: Chaotic and periodic dynamics of a slider crank mechanism with slider clearance. J. Sound Vib. 177, 307–324 (1994)

    Article  MATH  Google Scholar 

  10. Ravn, P.: A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dyn. 2, 1–24 (1998)

    Article  MATH  Google Scholar 

  11. Schwab, A.L., Meijaard, J.P., Meijers, P.: A comparison of revolute joint clearance models in the dynamic analysis of rigid and elastic mechanical systems. Mech. Mach. Theory 37, 895–913 (2002)

    Article  MATH  Google Scholar 

  12. Bing, S., Ye, J.: Dynamic analysis of the reheat-stop-valve mechanism with revolute clearance joint in consideration of thermal effect. Mech. Mach. Theory 43, 1625–1638 (2008)

    Article  MATH  Google Scholar 

  13. Khemili, I., Romdhane, L.: Dynamic analysis of flexible slider-crank mechanism with clearance. Eur. J. Mech. A, Solids 27, 882–898 (2008)

    Article  MATH  Google Scholar 

  14. Mauntler, N.: Kinematic and dynamic behavior of a wearing joint in a crank-slider mechanism. Ph.D. thesis, University of Florida (2009)

  15. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T.L., Sawyer, W.G.: Analysis of planar multibody systems with revolute joint wear. Wear 268, 643–652 (2010)

    Article  Google Scholar 

  16. Mukras, S., Kim, N.H., Schmitz, T.L., Sawyer, W.G.: Evaluation of contact force and elastic foundation models for wear analysis of multibody systems. In: Proceedings of the ASME 2010 International Design Engineering Technology Conferences, Montreal, Quebec, Canada, August 15–18 (2010). Paper No: DETC2010–DETC28750

    Google Scholar 

  17. Mukras, S., Kim, N.H., Mauntler, N.A., Schmitz, T., Sawyer, W.G.: Comparison between elastic foundation and contact force models in wear analysis of planar multibody system. J. Tribol. 132, 031604 (2010)

    Article  Google Scholar 

  18. Bai, Z.F., Zhao, Y.: Dynamic behaviour analysis of planar mechanical systems with clearance in revolute joints using new hybrid contact force model. Int. J. Mech. Sci. 54, 190–205 (2012)

    Article  Google Scholar 

  19. Liu, C., Zhang, K., Yang, L.: Normal force-displacement relationship of spherical joints with clearance. J. Comput. Nonlinear Dyn. 1, 160–167 (2006)

    Article  Google Scholar 

  20. Liu, C., Zhang, K., Yang, R.: The FEM analysis and approximate model for cylindrical joints with clearance. Mech. Mach. Theory 42, 183–197 (2007)

    Article  MATH  Google Scholar 

  21. Flores, P.: Dynamic analysis of mechanical systems with imperfect kinematic joints. Ph.D. thesis, Universidady do Minho (2004)

  22. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82, 1359–1369 (2004)

    Article  Google Scholar 

  23. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Influence of the contact-impact force model on the dynamic response of multibody systems. J. Multi-Body Dyn. 220, 21–34 (2006)

    Google Scholar 

  24. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M.: Translational Joints with clearance in rigid multibody systems. J. Comput. Nonlinear Dyn. 3, 011007 (2008)

    Article  Google Scholar 

  25. Flores, P.: Modeling and simulation of wear in revolute clearance joints in multibody systems. Mech. Mach. Theory 44, 1211–1222 (2009)

    Article  MATH  Google Scholar 

  26. Flores, P., Ambrósio, J., Claro, J.C.P., Lankarani, H.M., Koshy, C.S.: Lubricated revolute joints in rigid multibody systems. Nonlinear Dyn. 56, 277–295 (2009)

    Article  MATH  Google Scholar 

  27. Flores, P.: A parametric study on the dynamic response of planar multibody systems with multiple clearance joints. Nonlinear Dyn. 61, 633–653 (2010)

    Article  MATH  Google Scholar 

  28. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23, 165–190 (2010)

    Article  MathSciNet  Google Scholar 

  29. Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Flores, P., Koshy, C.S., Lankarani, H.M., Ambrósio, J., Claro, J.C.P.: Numerical and experimental investigation on multibody systems with revolute clearance joints. Nonlinear Dyn. 65, 383–398 (2011)

    Article  Google Scholar 

  31. Flores, P., Ambrósio, J., Pimenta, C.J.C., Lankarani, H.M.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2008)

    Google Scholar 

  32. Tian, Q., Zhang, Y., Chen, L., Yang, J.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  33. Megahed, S.M., Haroun, A.F.: Analysis of the dynamic behavioral performance of mechanical systems with multibody clearance joints. J. Comput. Nonlinear Dyn. 7, 011002 (2012)

    Article  Google Scholar 

  34. Olyaei, A.A., Ghazavi, M.R.: Stabilizing slider-crank mechanism with clearance joints. Mech. Mach. Theory 53, 17–29 (2012)

    Article  Google Scholar 

  35. Muvengei, O., Kihiu, J., Ikua, B.: Numerical study of parametric effects on the dynamic response of planar multi-body systems with differently located frictionless revolute clearance joints. Mech. Mach. Theory 53, 30–49 (2012)

    Article  Google Scholar 

  36. Muvengei, O., Kihiu, J., Ikua, B.: Dynamic analysis of planar multi-body systems with LuGre friction at differently located revolute clearance joints. Multibody Syst. Dyn. 28, 369–393 (2012)

    Article  MathSciNet  Google Scholar 

  37. Soong, K., Thompson, B.S.: A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint. J. Mech. Des. 112, 183–189 (1990)

    Article  Google Scholar 

  38. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37, 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ahmed, S., Lankarani, H.M., Pereira, M.F.O.S.: Frictional impact analysis in open-loop multibody mechanical system. J. Mech. Des. 121, 119–127 (1999)

    Article  Google Scholar 

  40. Flickinger, D.M., Bowling, A.: Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 23, 249–261 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. Aul, V., Kiekbusch, T., Marquart, M., Sauer, B.: Experimental and simulative determination of the frictional torque of roller bearings. In: Proc. of the 18th International Colloquium Tribology, Technische Akademie, Esslingen, pp. 10–12. Ostfildern, Germany, January 10–12 (2012)

    Google Scholar 

  42. Pereira, C.M., Ramalho, A.R., Ambrósio, J.A.: A critical overview of internal and external cylinder contact force models. Nonlinear Dyn. 63, 681–697 (2011)

    Article  Google Scholar 

  43. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  44. Teutsch, R., Sauer, B.: An Alternative slicing technique to consider pressure concentrations in non-Hertzian line contacts. J. Tribol. 126, 436–442 (2004)

    Article  Google Scholar 

  45. Gummer, A., Sauer, B.: Influence of contact geometry on local friction energy and stiffness of revolute joints. J. Tribol. 134, 021402 (2012)

    Article  Google Scholar 

  46. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. Int. J. Appl. Mech. 42, 440–445 (1975)

    Google Scholar 

  47. Teutsch, R.: Kontaktmodelle und Strategien zur Simulation von Wälzlagern und Wälzführungen. Ph.D. thesis, University of Kaiserslautern (2005)

  48. Scheuermann, M.: Dynamiksimulation zur virtuellen Produktentwicklung von Rollenschienenführungen. Ph.D. thesis, University of Kaiserslautern (2010)

  49. Choi, J., Ryu, H.S., Kim, C.W., Choi, J.H.: An effective and robust contact algorithm for a compliant contact force model between bodies of complex geometry. Multibody Syst. Dyn. 23, 99–120 (2010)

    Article  MATH  Google Scholar 

  50. Kharaz, A.H., Gorham, D.A.: A study of the restitution coefficient in elastic-plastic impact. Philos. Mag. Lett. 80, 549–559 (2000)

    Article  Google Scholar 

  51. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  MATH  Google Scholar 

  52. Threlfall, D.C.: The inclusion of coulomb friction in mechanisms programs with particular reference to DRAM. Mech. Mach. Theory 13, 475–483 (1978)

    Article  Google Scholar 

  53. Dahl, P.R.: A solid Friction model. The Aerospace Corporation. Aerospace Report No. TOR-0158(3107-18)-1, (1968)

  54. Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact models. Virtual Nonlinear Multibody Systems. In: Schiehlen, W., Valásek, M. (eds.) Nato Advanced Study Institute, vol. 103, pp. 57–81 (2003)

    Google Scholar 

  55. Sjö, A.: Numerical aspects in contact mechanics and rolling bearing simulation. Ph.D. thesis, Lund University, Sweden (1996)

  56. Yanada, H., Sekikawa, Y.: Modeling of dynamic behaviors of friction. Mechatronics 18, 330–339 (2008)

    Article  Google Scholar 

  57. Canudas de Wit, C., Olsson, H., Aström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MATH  Google Scholar 

  58. Bauchau, O.A., Ju, C.: Modeling friction phenomena in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195, 6909–6924 (2006)

    Article  MATH  Google Scholar 

  59. Olsson, H., Aström, K.J., Canudas de Wit, W.C., Gafvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gummer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gummer, A., Sauer, B. Modeling planar slider-crank mechanisms with clearance joints in RecurDyn. Multibody Syst Dyn 31, 127–145 (2014). https://doi.org/10.1007/s11044-012-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-012-9339-2

Keywords

Navigation