Skip to main content
Log in

Simultaneous oblique impacts and contacts in multibody systems with friction

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a new dissipation principle for resolving post-impact tangential velocities after simultaneous impact events on a system composed of interconnected rigid bodies. In this work, contact is considered as a succession of impacts so that simultaneous contacts and impacts can be treated using the same framework. This treatment includes Coulomb friction and considers hard impacts where deformation of the impacting surfaces is negligible. The impact problem is addressed using the complementarity conditions which lead to an investigation of the relationship between post-impact velocities and feasible coefficients of friction. These conditions do not define a unique post-impact velocity so a dissipation principle is proposed which is encoded as an optimization problem. This solution preserves the discontinuity between the static and dynamic coefficients of friction. The approach is illustrated on a bicycle-like structure with elliptical wheels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gilardi, G., Sharf, I.: Literature survey of contact dynamics modeling. Mech. Mach. Theory 37(10), 1213–1239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Flores, P., Ambrosio, J., Claro, J., Lankarani, H.: Influence of the contact–impact force model on the dynamic response of multi-body systems. Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn. 220(1), 21–34 (2006)

    Google Scholar 

  3. Modarres Najafabadi, S.A., Kovecses, J., Angeles, J.: Impacts in multibody systems: modeling and experiments. Multibody Syst. Dyn. 20(2), 163–176 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Djerassi, S.: Collision with friction; Part B: Poisson’s and Stornge’s hypotheses. Multibody Syst. Dyn. 21(1), 55–70 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Stewart, D.E.: Rigid-body dynamics with friction and impact. SIAM Rev. 42(1), 3–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177(3–4), 329–349 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brogliato, B., Ten Dam, A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–149 (2002)

    Article  Google Scholar 

  8. Liu, T., Wang, M.Y., Low, K.H.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn. 22(3), 269–295 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stoianovici, D., Hurmuzlu, Y.: A critical study of the applicability of rigid body collision theory. ASME J. Appl. Mech. 63(2), 307–316 (1996)

    Article  Google Scholar 

  10. Hurmuzlu, Y.: An energy based coefficient of restitution for planar impacts of slender bars with massive external surfaces. ASME J. Appl. Mech. 65(4), 952–952 (1998)

    Google Scholar 

  11. Kim, H.-J., Yoo, W.-S., Ok, J.-K., Kang, D.-W.: Parameter identification of damping models in multibody dynamic simulation of mechanical systems. Multibody Syst. Dyn. (2009)

  12. Djerassi, S.: Collision with friction; part a: Newton’s hypothesis. Multibody Syst. Dyn. 21(1), 37–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Karnopp, D.: Computer simulation of stick-slip friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107(1), 100–103 (1985)

    Article  Google Scholar 

  14. Haessig, D.A., Jr.: Friedland, B.: On the modeling and simulation of friction. J. Dyn. Syst. Meas. Control 113(3), 354–362 (1991)

    Article  Google Scholar 

  15. Ambrósio, J., Verissimo, P.: Improved bushing models for general multibody systems and vehicle dynamics. Multibody Syst. Dyn. (2009)

  16. Aoustin, Y., Formal’Skii, A.: Ball on a beam: stabilization under saturated input control with large basin of attraction. Multibody Syst. Dyn. 21(1), 71–89 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bowling, A., Flickinger, D.M., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22(1), 27–45 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bowling, A.P.: Impact forces and agility in legged robot locomotion. J. Vib. Control (2009, in press)

  19. Craig, J.J.: Introduction to Robotics: Mechanics and Control, 2nd edn. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  20. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Han, I., Gilmore, B.J.: Multi-body impact motion with friction—analysis, simulation, and experimental validation. J. Mech. Des. 115(3), 412–422 (1993)

    Article  Google Scholar 

  22. Mouri, T., Yamada, T., Iwai, A., Mimura, N., Funahashi, Y.: Identification of contact conditions from contaminated data of contact force and moment. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 597–603 (2001)

  23. Bowling, A.: Dynamic performance, mobility, and agility of multi-legged robots. J. Dyn. Syst. Meas. Control 128(4), 765–777 (2006)

    Article  Google Scholar 

  24. Brach, R.: Friction, restitution, and energy loss in planar collisions. J. Appl. Mech. 51(1), 164–170 (1984)

    Article  MATH  Google Scholar 

  25. Brach, R.: Mechanical Impact Dynamics: Rigid Body Collisions. Wiley, New York (1991)

    Google Scholar 

  26. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control. Springer, London (1999), p. 128

    MATH  Google Scholar 

  27. Brach, R.: Formulation of rigid body impact problems using generalized coordinates. Int. J. Eng. Sci. 36(1), 61–71 (1998)

    Article  MathSciNet  Google Scholar 

  28. Becker, V., Schwager, T.: Coefficient of tangential restitution for the linear dashpot model. Phys. Rev. E 77(1), 011304–1–011304–12 (2008)

    Article  Google Scholar 

  29. Schiehlen, W., Seifried, R.: Three approaches for elastodynamic contact in multibody systems. Multibody Syst. Dyn. 12(1), 1–16 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Bowling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flickinger, D.M., Bowling, A. Simultaneous oblique impacts and contacts in multibody systems with friction. Multibody Syst Dyn 23, 249–261 (2010). https://doi.org/10.1007/s11044-009-9182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-009-9182-2

Navigation