Skip to main content
Log in

Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Swertia chirayita is a high-value medicinal herb exhibiting antidiabetic, hepatoprotective, anticancer, antiediematogenic and antipyretic properties. Scarcity of its plant material has necessitated in vitro production of therapeutic metabolites; however, their yields were low compared to field grown plants. Possible reasons for this could be differences in physiological and biochemical processes between plants grown in photoautotrophic versus photoheterotrophic modes of nutrition. Comparative transcriptomes of S. chirayita were generated to decipher the crucial molecular components associated with the secondary metabolites biosynthesis. Illumina HiSeq sequencing yielded 57,460 and 43,702 transcripts for green house grown (SCFG) and tissue cultured (SCTC) plants, respectively. Biological role analysis (GO and COG assignments) revealed major differences in SCFG and SCTC transcriptomes. KEGG orthology mapped 351 and 341 transcripts onto secondary metabolites biosynthesis pathways for SCFG and SCTC transcriptomes, respectively. Nineteen out of 30 genes from primary metabolism showed higher in silico expression (FPKM) in SCFG versus SCTC, possibly indicating their involvement in regulating the central carbon pool. In silico data were validated by RT-qPCR using a set of 16 genes, wherein 10 genes showed similar expression pattern across both the methods. Comparative transcriptomes identified differentially expressed transcription factors and ABC-type transporters putatively associated with secondary metabolism in S. chirayita. Additionally, functional classification was performed using NCBI Biosystems database. This study identified the molecular components implicated in differential modes of nutrition (photoautotrophic vs. photoheterotrophic) in relation to secondary metabolites production in S. chirayita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

6PGD:

6-Phosphogluconate dehydrogenase

6PGL:

6-Phosphogluconolactonase

7-DLGT:

7-Deoxyloganetic acid glucosyl transferase

8-HGO:

8-Hydroxygeraniol oxidoreductase

AAC:

Acetyl-CoA carboxylase

AACT:

Acetoacetyl-CoA thiolase

ADH:

Arogenate dehydrogenase

ADT:

Prephenate dehydratase

AH:

Aconitate hydratase

C3H:

p-Coumarate 3-hydroxylase

C4H:

Trans-cinnamate 4-hydroxylase

CM:

Chorismate mutase

COG:

Clusters of orthologous groups

CS:

Chorismate synthase

CRS:

Citrate (si)-synthase

DAHPS:

3-Deoxy-D-arabinoheptulosonate-7-phosphate synthase

DHQD:

3-Dehydroquinate dehydratase

DHQS:

3-Dehydroquinate synthase

DL7H:

7-Deoxyloganic acid hydroxylase

DLD:

Dihydrolipoamide dehydrogenase (part of oxoglutarate dehydrogenase complex)

DLST:

Dihydrolipoamide S-succinyl transferase (part of oxoglutarate dehydrogenase complex)

DXR:

1-Deoxy-D-xylulose 5-phosphate reductoisomerase

DXS:

1-Deoxy-D-xylulose 5-phosphate synthase

ENO:

Enolase

EPSPS:

5-Enolpyruvylshikimate-3-phosphate synthase

FBA:

Fructose bisphosphate aldolase

FBP:

Fructose bisphosphatase

FUM:

Fumarate hydratase

G10H:

Geraniol 10-hydroxylase/8-oxidase

G6PD:

Glucose 6-phosphate dehydrogenase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GDPS:

Geranyl diphosphate synthase

GES:

Geraniol synthase

GO:

Gene ontology

GPI:

Phosphoglucose isomerise

HMGR:

3-Hydroxy-3-methylglutaryl-CoA reductase

HMGS:

3-Hydroxy-3-methylglutaryl-CoA synthase

HXK:

Hexokinase

IDH:

Isocitrate dehydrogenase

IO:

Iridoid oxidase

IPPI:

Isopentenyl diphosphate isomerase

IS:

Iridoid synthase

ISPD:

2-C-Methyl-D-erythritol 4-phosphate cytidylyltransferase

ISPE:

4-(Cytidine-5′-diphospho)-2-C-methyl-D-erythritol kinase

ISPF:

2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase

ISPG:

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate synthase

ISPH:

(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate reductase

KEGG:

Kyoto encyclopedia of genes and genomes

LMT:

Loganic acid O-methyltransferase

MEP:

2-C-Methyl-D-erythritol 4-phosphate

MQO:

Malate:quinone oxidoreductase

MVA:

Mevalonate

MVDD:

Mevalonate diphosphate decarboxylase

MVK:

Mevalonate kinase

OGDH:

Oxoglutarate dehydrogenase E1 subunit (part of oxoglutarate dehydrogenase complex)

PAL:

Phenylalanine ammonia lyase

PAT:

Aspartate–prephenate aminotransferase

PFK1:

Phosphofructokinase

PGAM:

Phosphoglycerate mutase

PGK:

Phosphoglycerate kinase

PHAT:

Phenylalanine (histidine) aminotransferase

PMK:

Phosphomevalonate kinase

PRK:

3-Epimerase phosphoribulokinase

PVK:

Pyruvate kinase

RPE:

Ribulose 5-phosphate 3-epimerase

RPI:

Ribose 5-phosphate isomerase

RuBisCO:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

SAK:

Shikimate kinase

SCFG:

Swertia chirayita green house grown plant

SCTC:

Swertia chirayita tissue cultured plants

SDH:

Shikimate dehydrogenase

SLS:

Secologanin synthase

SUCLG:

Succinate-CoA ligase

TAL:

Tyrosine ammonia-lyase

TALD:

Transaldolase

TKT:

Transketolase

TPI:

Triosephosphate isomerise

References

  1. Rao MR, Palada MC, Becker BN (2004) Medicinal and aromatic plants in agroforestry systems. Agrofor Syst 61–62(1–3):107–122

    Google Scholar 

  2. Kala CP, Dhyani PP, Sajwan BS (2006) Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed 2:32

    Article  PubMed Central  Google Scholar 

  3. Hasan SZ, Misra V, Singh S et al (2009) Current status of herbal drugs and their future perspectives. Biol Forum Int J 1:12–17

    Google Scholar 

  4. Sharma A (2004) Global medicinal plants demand may touch $5 trillion by 2050. Indian Express

  5. Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159–165

    CAS  Google Scholar 

  6. Joshi P, Dhawan V (2005) Swertia chirayita : an overview. Curr Sci 89:635–640

    CAS  Google Scholar 

  7. Williamson EM (2002) Major herbs of Ayurveda. Churchill Livingstone, New York

    Google Scholar 

  8. Bhat GP, Surolia N (2001) In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. Am J Trop Med Hyg 65:304–308

    Article  CAS  PubMed  Google Scholar 

  9. Alam KD, Ali MS, Mahjabeen S, Hassan MR, Rahman MF, Chowdhury RMAA. (2011) Potential hypoglycemic effect of Swertia chirata: an Indian subcontinent herb with important medicinal value. Pharmacol Online 2:642–647

    Google Scholar 

  10. Arya R, Sharma S, Singh S (2011) Antidiabetic effect of whole plant extract and fractions of Swertia chirayita Buch.-Ham. Planta Med 77:138

    Article  Google Scholar 

  11. Nagalekshmi R, Menon A, Chandrasekharan DK, Nair CKK (2011) Hepatoprotective activity of Andrographis paniculata and Swertia chirayita. Food Chem Toxicol 49:3367–3373

    Article  CAS  PubMed  Google Scholar 

  12. Verma VK, Sarwa KK, Kumar A, Zaman MK (2013) Comparison of hepatoprotective activity of Swertia chirayita and Andrographis paniculata plant of north-east India against CCl4 induced hepatotoxic rats. J Pharm Res 7(7):647–653

    CAS  Google Scholar 

  13. Saha P, Mandal S, Das A, Das PC, Das S (2004) Evaluation of the anticarcinogenic activity of Swertia chirata Buch.Ham, an Indian medicinal plant, on DMBA-induced mouse skin carcinogenesis model. Phytother Res 18:373–378

    Article  PubMed  Google Scholar 

  14. Banerjee S, Sur TK, Mandal S, Das PC, Sikdar S (2010) Assessment of the anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats. Indian J Pharmacol 32:21–24

    Google Scholar 

  15. Das SC, Bhadra S, Roy S, Saha SK, Islam MS, Bachar SC (2012) Analgesic and anti-inflammatory activities of ethanolic root extract of Swertia chirata (Gentianaceae). Jordan J Biol 5:31–36

    Google Scholar 

  16. Roy P, Abdulsalam FI, Pandey DK, Bhattacharjee A, Eruvaram NR, Malik T (2015) Evaluation of antioxidant, antibacterial, and antidiabetic potential of two traditional medicinal plants of India: Swertia cordata and Swertia chirayita. Pharmacognosy Res 7(Suppl 1):S57

    PubMed  PubMed Central  Google Scholar 

  17. Verma H, Patil PR, Kolhapure RM, Gopalkrishna V (2008) Antiviral activity of the Indian medicinal plant extract, Swertia chirata against herpes simplex viruses: a study by in-vitro and molecular approach. Indian J Med Microbiol 26:322

    Article  CAS  PubMed  Google Scholar 

  18. Rehman S, Latif A, Ahmad S, Khan AU (2011) In-vitro antibacterial screening of Swertia chirayita Linn. against some gram negative pathogenic strains. Int J Pharm Res Dev 4:188–194

    Google Scholar 

  19. Laxmi A, Siddhartha S, Archana M (2011) Antimicrobial screening of methanol and aqueous extracts of Swertia chirata. Int J Pharm Pharm Sci 3(Suppl 4):142–146

    Google Scholar 

  20. Patil K, Dhande S, Kadam V (2013) Therapeutic Swertia chirata: an overview. Res J Pharmacogn Phytochem 5:199–207

    Google Scholar 

  21. Badola HK, Pal M (2002) Endangered medicinal plant species in Himachal Pradesh. Curr Sci 83:797–798

    Google Scholar 

  22. Bhat JA, Kumar M, Negi A, Todaria N (2013) Informants’ consensus on ethnomedicinal plants in Kedarnath Wildlife Sanctuary of Indian Himalayas. J Med Plant Res 7:148–154

    Google Scholar 

  23. IUCN S (2008) The IUCN Red List of Threatened Species, 1994–2007 version. IUCN, Gland

    Google Scholar 

  24. Padhan JK, Kumar V, Sood H, Singh TR, Chauhan RS (2015) Contents of therapeutic metabolites in Swertia chirayita correlate with the expression profiles of multiple genes in corresponding biosynthesis pathways. Phytochemistry 116:38–47

    Article  CAS  PubMed  Google Scholar 

  25. Kovarik B (2013) Biofuels in history, in: Singh BP (ed) Biofuel crops: production, physiology and genetics. CABI Publishing, Wallingford, pp 1–22

    Google Scholar 

  26. Zhang J, Wrage EL, Vankova R, Malbeck J, Neff MM (2006) Over-expression of SOB5 suggests the involvement of a novel plant protein in cytokinin-mediated development. Plant J 46:834–848

    Article  CAS  PubMed  Google Scholar 

  27. Parkash J, Vaidya T, Kirti S, Dutt S (2014) Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid. Gene 542:1–7

    Article  CAS  PubMed  Google Scholar 

  28. Koslowsky S, Riegler H, Bergmüller E, Zrenner R (2008) Higher biomass accumulation by increasing phosphoribosylpyrophosphate synthetase activity in Arabidopsis thaliana and Nicotiana tabacum. Plant Biotechnol J 6:281–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mosaleeyanon K, Zobayed SMA, Afreen F, Kozai T (2005) Relationships between net photosynthetic rate and secondary metabolite contents in St. John’s wort. Plant Sci 169(3):523–531

    Article  CAS  Google Scholar 

  30. Fine PVA, Miller ZJ, Mesones I et al (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87:S150–S162

    Article  PubMed  Google Scholar 

  31. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20

    Article  CAS  PubMed  Google Scholar 

  32. Casal JJ, Yanovsky MJ (2005) Regulation of gene expression by light. Int J Dev Biol 49:501

    Article  CAS  PubMed  Google Scholar 

  33. Kawoosa T, Singh H, Kumar A et al (2010) Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct Integr Genom 10:393–404

    Article  CAS  PubMed  Google Scholar 

  34. Paulilo MTS, Lapa FS, Falkenberg MdB (2010) Effect of light intensity and growth substratum on plant development and production of secondary metabolites in Cordia curassavica (Jacq.) Roem Schult. Rev Árvore 34:417–423

    Article  CAS  Google Scholar 

  35. Dewick PM (2001) Secondary metabolism: the building blocks and construction mechanisms. In: Medicinal natural products: a biosynthetic approach. Wiley, Chichester, pp 7–38

    Chapter  Google Scholar 

  36. Dreyer I, Horeau C, Lemaillet G et al (1999) Identification and characterization of plant transporters. J Exp Bot 50:1073–1087

    CAS  Google Scholar 

  37. Jiménez-Guri E, Huerta-Cepas J, Cozzuto L et al (2013) Comparative transcriptomics of early dipteran development. BMC Genom 14:123

    Article  Google Scholar 

  38. Smith SA, Wilson NG, Goetz FE et al (2011) Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480:364–367

    Article  CAS  PubMed  Google Scholar 

  39. Hartmann S, Helm C, Nickel B et al (2012) Exploiting gene families for phylogenomic analysis of Myzostomid transcriptome data. PLoS ONE 7:e29843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682

    Article  CAS  PubMed  Google Scholar 

  41. Kumar V, Chauhan R, Sood H (2013) In vitro production and efficient quantification of major phytopharmaceuticals in an endangered medicinal herb, Swertia chirata. Int J Biotechnol Bioeng Res 4:495–506

    Google Scholar 

  42. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  43. Magrane M, Consortium U (2011) UniProt knowledgebase: a hub of integrated protein data. Database 2011:bar009

    Article  PubMed  PubMed Central  Google Scholar 

  44. Conesa A, Götz S, García-Gómez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  45. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  46. Jaiswal V, Chanumolu SK, Gupta A, Chauhan RS, Rout C (2013) Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinform 14:211

    Article  Google Scholar 

  47. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  48. Vandesompele J, De Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515

    Article  CAS  PubMed  Google Scholar 

  50. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  51. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  52. Geer LY, Marchler-Bauer A, Geer RC et al (2010) The NCBI BioSystems database. Nucleic Acids Res 38:D492–D496

    Article  CAS  PubMed  Google Scholar 

  53. Vom Endt D, Kijne JW, Memelink J (2002) Transcription factors controlling plant secondary metabolism: what regulates the regulators? Phytochemistry 61:107–114

    Article  CAS  PubMed  Google Scholar 

  54. Dai X, Sinharoy S, Udvardi M, Zhao PX (2013) PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinform 14:321

    Article  Google Scholar 

  55. Yang CQ, Fang X, Wu XM et al (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54:703–712

    Article  CAS  PubMed  Google Scholar 

  56. Goossens A, Häkkinen ST, Laakso I, Oksman-Caldentey KM, Inzé D (2003) Secretion of secondary metabolites by ATP-binding cassette transporters in plant cell suspension cultures. Plant Physiol 131:1161–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kang J, Park J, Choi H et al (2011) Plant ABC transporters. Arabidopsis Book 9:e0153

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pal T, Malhotra N, Chanumolu SK, Chauhan RS (2015) Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall. Planta 242(1):239–258

    Article  CAS  PubMed  Google Scholar 

  59. Gahlan P, Singh HR, Shankar R et al (2012) De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genom 13:126

    Article  CAS  Google Scholar 

  60. Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genom 14:748

    Article  CAS  Google Scholar 

  61. Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19:1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pradhan S, Bandhiwal N, Shah N et al (2014) Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds. Front Plant Sci 5:698

    Article  PubMed  PubMed Central  Google Scholar 

  63. Qi B, Yang Y, Yin Y, Xu M, Li H (2014) De novo sequencing, assembly, and analysis of the Taxodium ‘Zhongshansa’ roots and shoots transcriptome in response to short-term waterlogging. BMC Plant Biol 14:201

    Article  PubMed  PubMed Central  Google Scholar 

  64. Armisén D, Lecharny A, Aubourg S (2008) Unique genes in plants: specificities and conserved features throughout evolution. BMC Evol Biol 8:280

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sood A, Jaiswal V, Chanumolu SK et al (2014) Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 41:7683–7695

    Article  CAS  PubMed  Google Scholar 

  66. Haake V, Cook D, Riechmann JL et al (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kumar P, Pal T, Sharma N et al. (2015) Expression analysis of biosynthetic pathway genes vis-à-vis podophyllotoxin content in Podophyllum hexandrum Royle. Protoplasma 252:1–10

    Article  Google Scholar 

  68. Pandit S, Shitiz K, Sood H, Naik PK, Chauhan RS (2013) Expression pattern of fifteen genes of non-mevalonate (MEP) and mevalonate (MVA) pathways in different tissues of endangered medicinal herb Picrorhiza kurroa with respect to picrosides content. Mol Biol Rep 40:1053–1063

    Article  CAS  PubMed  Google Scholar 

  69. Malhotra N, Kumar V, Sood H, Singh TR, Chauhan RS (2014) Multiple genes of mevalonate and non-mevalonate pathways contribute to high aconites content in an endangered medicinal herb, Aconitum heterophyllum Wall. Phytochemistry 108:26–34

    Article  CAS  PubMed  Google Scholar 

  70. Singh AK, Sharma V, Pal AK, Acharyam V, Ahuja PS (2013) Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.). DNA Res 20:403–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paul A, Jha A, Bhardwaj S et al (2014) RNA-seq-mediated transcriptome analysis of actively growing and winter dormant shoots identifies non-deciduous habit of evergreen tree tea during winters. Sci Rep 4:5932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arya P, Kumar G, Acharya V, Singh AK (2014) Genome-wide identification and expression analysis of NBS-encoding genes in Malus × domestica and expansion of NBS genes family in Rosaceae. PLoS ONE 9:e107987

    Article  PubMed  PubMed Central  Google Scholar 

  73. Veau B, Courtois M, Oudin A et al (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. BBA-Gene Struct Expr 1517:159–163

    Article  CAS  Google Scholar 

  74. De-Eknamkul W, Potduang B (2003) Biosynthesis of β-sitosterol and stigmasterol in Croton sublyratus proceeds via a mixed origin of isoprene units. Phytochemistry 62:389–398

    Article  CAS  PubMed  Google Scholar 

  75. Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L. (Dunal). Plant Cell Rep 31:1889–1897

    Article  CAS  PubMed  Google Scholar 

  76. Yang L, Ding G, Lin H et al (2013) Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis. PLoS ONE 8:e80464

    Article  PubMed  PubMed Central  Google Scholar 

  77. Spyropoulou EA, Haring MA, Schuurink RC (2014) Expression of Terpenoids 1, a glandular trichome-specific transcription factor from tomato that activates the terpene synthase 5 promoter. Plant Mol Biol 84:345–357

    Article  CAS  PubMed  Google Scholar 

  78. Yu ZX, Li JX, Yang CQ et al (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5:353–365

    Article  CAS  PubMed  Google Scholar 

  79. Theodoulou FL (2000) Plant ABC transporter. BBA-Biomembr 1465:79–103

    Article  CAS  Google Scholar 

  80. Holland IB, Cole SPC, Kuchler K, Higgins CF (2003) ABC proteins: from bacteria to man. Academic Press, Amsterdam

    Google Scholar 

  81. Jeong CB, Kim BM, Lee JS, Rhee JS (2014) Genome-wide identification of whole ATP-binding cassette (ABC) transporters in the intertidal copepod Tigriopus japonicas. BMC Genom 15:651

    Article  Google Scholar 

  82. Garmory HS, Titball RW (2004) ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72:6757–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Singh RS, Gara RK, Bhardwaj PK et al (2010) Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle) Johnston]. BMC Mol Biol 11:88

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hardy T, Chaumont D, Wessinger ME, Bournat P (1987) Photoautotrophic suspension cultures II: transition from photoheterotrophic to photoautotrophic growth. J Plant Physiol 130(4):351–361

    Article  CAS  Google Scholar 

  86. Flores HE, Dai YR, Cuello JL, Maldonado-Mendoza IE, Loyola-Vargas VM (1993) Green roots: photosynthesis and photoautotrophy in an underground plant organ. Plant Physiol 101(2):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology, Ministry of Science and Technology, Government of India for providing financial support to RSC in the form of a programme support on high-value medicinal plants.

Author information

Authors and Affiliations

Authors

Contributions

RSC conceptualized and hypothesized the biological questions. HS and JKP generated the study materials. TP and JKP did the computational analyses, JKP and PK analyzed literature into experiments, results and interpretations. All authors have contributed to, seen, and approved the manuscript.

Corresponding author

Correspondence to Rajinder S. Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Data accessibility All scripts and sequence data used in this study are accessible via http://14.139.240.55/NGS/download.php.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, T., Padhan, J.K., Kumar, P. et al. Comparative transcriptomics uncovers differences in photoautotrophic versus photoheterotrophic modes of nutrition in relation to secondary metabolites biosynthesis in Swertia chirayita. Mol Biol Rep 45, 77–98 (2018). https://doi.org/10.1007/s11033-017-4135-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4135-y

Keywords

Navigation