Skip to main content
Log in

Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Jatropha (Jatropha curcas L.) and Castor bean (Ricinus communis) are oilseed crops of family Euphorbiaceae with the potential of producing high quality biodiesel and having industrial value. Both the bioenergy plants are becoming susceptible to various biotic stresses directly affecting the oil quality and content. No report exists as of today on analysis of Nucleotide Binding Site-Leucine Rich Repeat (NBS-LRR) gene repertoire and defense response transcription factors in both the plant species. In silico analysis of whole genomes and transcriptomes identified 47 new NBS-LRR genes in both the species and 122 and 318 defense response related transcription factors in Jatropha and Castor bean, respectively. The identified NBS-LRR genes and defense response transcription factors were mapped onto the respective genomes. Common and unique NBS-LRR genes and defense related transcription factors were identified in both the plant species. All NBS-LRR genes in both the species were characterized into Toll/interleukin-1 receptor NBS-LRRs (TNLs) and coiled-coil NBS-LRRs (CNLs), position on contigs, gene clusters and motifs and domains distribution. Transcript abundance or expression values were measured for all NBS-LRR genes and defense response transcription factors, suggesting their functional role. The current study provides a repertoire of NBS-LRR genes and transcription factors which can be used in not only dissecting the molecular basis of disease resistance phenotype but also in developing disease resistant genotypes in Jatropha and Castor bean through transgenic or molecular breeding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jayanna K (2006) Studies on Jatropha mosaic virus disease. M.Sc. Dissertation, University of Agricultural Sciences, Dharwad

  2. Tewari JP, Dwivedi HD, Pathak M, Srivastava SK (2007) Incidence of a mosaic disease in Jatropha curcas L. from eastern Uttar Pradesh. Curr Sci 93(8):1048–1049

    Google Scholar 

  3. Aswatha Narayana DS, Rangaswamy KS, Shankarappa MN, Maruthi MN, Reddy CNL, Rekha AR, Murthy KVK (2007) Distinct Begmoviruses closely related to cassava mosaic viruses causes Indian Jatropha Mosaic Disease. Int J Virol 3:1–11

    Article  Google Scholar 

  4. Raj SK, Kumar S, Snehi SK, Pathre U (2008) First report of Cucumber mosaic virus on Jatropha curcas L. in India. Plant Dis 92:171

    Article  Google Scholar 

  5. Gao S, Qu J, Chua NH, Ye J (2010) A new strain of Indian cassava mosaic virus causes a mosaic disease in the biodiesel crop Jatropha curcas L. Arch Virol 155:607–612

    Article  PubMed  CAS  Google Scholar 

  6. Kumar R, Sinha A, Singh SR, Kamil D (2009) Incidence of a leaf spot disease in Jatropha curcas L. from Eastern Uttar Pradesh. J Mycol Plant Pathol 39(3):536–538

    Google Scholar 

  7. Machado AR, Pinho DB, Dutra DC, Pereira OL (2012) First report of collar and root rot of physic nut (Jatropha curcas L.) caused by Neoscytalidium dimidiatum in Brazil. Plant Dis 96(11):1697

    Article  Google Scholar 

  8. Srinivasa Rao CH, Kumari MP, Wani SP, Marimuthu S (2011) Occurrence of black rot in Jatropha curcas L. plantations in India caused by Botryosphaeria dothidea. Curr Sci 100(10):1547–1549

    Google Scholar 

  9. Kwon JH, Choi O, Kim J, Kwak YS (2012) First report of anthracnose disease on Jatropha curcas L. caused by Colletotrichum gloeosporioides in Korea. J Phytopathol 160:255–257

    Article  Google Scholar 

  10. Grieco F, Parrella G, Vovlas C (2002) An isolate of Olive latent virus 2 infecting castor bean in Greece. J Plant Pathol 84:129–131

    Google Scholar 

  11. Parrella G, De Stradis A, Vovlas C (2008) First report of Olive latent virus 2 in wild castor bean ( Ricinus communis L.) in Italy. Plant Pathol 57:392

    Article  Google Scholar 

  12. Raj SK, Snehi SK, Gautam KK, Khan MS (2010) First report of association of Cucumber mosaic virus with blister and leaf distortion of Castor bean (Ricinus communis L.) in India. Phytoparasitica 38:283–289

    Article  Google Scholar 

  13. Gahukar RT, Seguni ZSK (2009) First record of severe attack of the fungal complex on castor in Tanzania. Int Pest Cont 51(1):26

    Google Scholar 

  14. Esfahani MN, Monazzah M (2011) Identification and assessment of fungal diseases of major medicinal plants. J Ornam Hortic Plants 1(3):137–145

    Google Scholar 

  15. Smith EF, Godfrey GH (1921) Bacterial wilt of Castor bean (Ricinus communis L.). J Agric Res 21(4):255–261

    Google Scholar 

  16. Sabet KA (1959) Studies in the bacterial diseases of Sudan crops IV. Bacterial leaf-spot and canker disease of mahogany (Khaya senegalensis (Desr.) A. Juss. and K. grandifoliola C. DC). Ann Appl Biol 47(658–665):14

    Google Scholar 

  17. Chauhan RS, Sood A (2013) Comparative genomics in Euphorbiaceae. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha: challenges for a new energy crop, vol 2. Springer, New York, pp 351–374

    Google Scholar 

  18. Klessig DF, Durner J, Shah J, Yang Y (1998) Salicylic acid-mediated signal transduction in plant disease resistance. In: Romeo JT, Kelsey R, Verpoorte DR (eds) Recent advances in phytochemistry. vol 32. pp 119–137

  19. Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15(11):2636–2646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 14;411(6839):826-833

  21. Lorang JM, Sweat TA, Wolpert TJ (2007) Plant disease susceptibility conferred by a “resistance” gene. Proc Natl Acad Sci USA 104:14861–14866

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Tarr DE, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:197

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo YL, Fitz J, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich-repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Martin GB, Bogdanove AJ, Sessa G (2003) Understanding the functions of plant disease resistance proteins. Annu Rev Plant Biol 54:23–61

    Article  PubMed  CAS  Google Scholar 

  25. DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. van Ooijen G, van den Burg HA, Cornelissen BJ, Takken FL (2007) Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45:43–72

    Article  PubMed  Google Scholar 

  27. van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:226–227

    Article  Google Scholar 

  28. Tameling WI, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen BJ, Takken FL (2006) Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 140:1233–1245

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Luck JE, Lawrence GJ, Dodds PN, Shepherd KW, Ellis JG (2000) Regions outside of the leucine-rich repeats of flax rust resistance proteins play a role in specificity determination. Plant Cell 12:1367–1377

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317–332

    Article  PubMed  CAS  Google Scholar 

  31. Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  32. Zhou T, Wang Y, Chen J, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes. Mol Genet Genomics 271:402–415

    Article  PubMed  CAS  Google Scholar 

  33. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH (1989) Data of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Desveaux D, Subramaniam R, Després C, Mess JN, Lévesque C, Fobert PR, Dangl JL, Brisson N (2004) A “Whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    Article  PubMed  CAS  Google Scholar 

  35. Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol 1:311–315

    Article  PubMed  CAS  Google Scholar 

  36. Fan W, Dong X (2002) In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid–mediated gene activation in Arabidopsis. Plant Cell 14:1377–1389

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Alves MS, Dadalto SP, Gonçalves AB, de Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14:7815–7828

    Article  PubMed  PubMed Central  Google Scholar 

  38. Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 10:544

    Article  Google Scholar 

  39. Pandey SP, Somssich IE (2009) The role of WRKY transcription factors in plant immunity. Plant Physiol 150(1648–1655):15

    Google Scholar 

  40. Marone D, Russo MA, Laidò G, Leonardis AMD, Mastrangelo AM (2013) Plant nucleotide binding site–leucine-rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30:415–429

    Article  PubMed  CAS  Google Scholar 

  42. Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus specific manner. Proc Natl Acad Sci USA 103:11856–11861

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Tai TH, Dahlbeck D, Clark ET et al (1999) Expression of the Bs2pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14158

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Gao L, Cao Y, Xia Z, Jiang G, Liu G, Zhang W, Zhai W (2013) Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants?—a comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21. BMC Genomics 14:738

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Mascher F, Matasci C, Kneubuehler Y, Brunner S, Schori A, Keller B (2012) Evaluation of disease resistance in wheat supplemented with Pm3b. Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 15–18

  46. Narusaka M, Kubo Y, Hatakeyama K, Imamura J, Ezura H, Nanasato Y, Tabei Y, Takano Y, Shirasu K, Narusaka Y (2013) Interfamily transfer of dual NB-LRR genes confers resistance to multiple pathogens. PLoS One 8:e55954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Chan AP, Crabtree J, Zhao Q et al (2010) Draft genome sequence of the oilseed species Ricinus communis L. Nat Biotechnol 28(9):951–956

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Jupe F, Pritchard L, Etherington GJ et al (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genomics 13:75

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Kohler A, Rinaldi C, Duplessis S, Baucher M, Geelen D, Duchaussoy F, Meyers BC, Boerjan W, Martin F (2008) Genome-wide identification of NBS resistance genes in Populus trichocarpa. Plant Mol Biol 66:619–636

    Article  PubMed  CAS  Google Scholar 

  53. Wan H, Yuan W, Bo K, Shen J, Pang X, Chen J (2013) Genome-wide analysis of NBS-encoding disease resistance in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops. BMC Genomics 14:109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Song X, Li Y, Hou X (2013) Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp pekinensis). BMC Genomics 14:573

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Libault M, Wan J, Czechowski T, Udvardi M, Stacey G (2007) Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase genes responding to chitin, a plant-defense elicitor. Mol Plant Microbe Interact 20:900–911

    Article  PubMed  CAS  Google Scholar 

  56. Osorio MB, Buecker-Neto L, Castilhos G, Turchetto-Zolet AC, Wiebke-Strohm B, Bodanese-Zanettini MH, Margis-Pinheiro M (2012) Identification and in silico characterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses. Genet Mol Biol 35:233–246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Plocik A, Layden J, Kesseli R (2004) Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce and chicory. Mol Phylogenet Evol 31(1):153–163

    Article  PubMed  CAS  Google Scholar 

  58. Li Y, Tessaro MJ, Li X, Zhang Y (2010) Regulation of the expression of plant resistance gene SNC1 by a protein with a conserved BAT2 domain. Plant Physiol 153(1425–1434):16

    Google Scholar 

  59. Yu J, Tehrim S, Zhang F et al (2014) Genome-wide comparative analysis of NBS-encoding genes between Brassica species and Arabidopsis thaliana. BMC Genomics 15:3

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL (2000) The Pfam protein families database. Nucleic Acids Res 28:263–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Li B, Dewey CN (2011) RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinform 12:323

    Article  CAS  Google Scholar 

  63. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  65. Yang S, ZhangX Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Genet Genomics 280:187–198

    Article  PubMed  CAS  Google Scholar 

  66. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96

    CAS  Google Scholar 

  67. Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  PubMed  CAS  Google Scholar 

  68. Deutsch M, Long M (1999) Intron-exon structures of eukaryotic model organisms. Nucleic Acids Res 27:3219–3228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Dinesh-Kumar SP, Baker BJ (2000) Alternatively spliced N resistance gene transcripts: their possible role in tobacco mosaic virus resistance. Proc Natl Acad Sci USA 97:1908–1913

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Reddy AS (2007) Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol 58:267–294

    Article  PubMed  CAS  Google Scholar 

  71. Tang S, Riva A (2013) PASTA: splice junction identification from RNA-sequencing data. BMC Bioinform 14(1):116

    Article  Google Scholar 

  72. Chen G, Pan D, Zhou Y, Lin S, Ke X (2007) Diversity and evolutionary relationship of nucleotide binding site-encoding disease-resistance gene analogues in sweet potato (Ipomoea batatas Lam.). J Biosci 32:713–721

    Article  PubMed  CAS  Google Scholar 

  73. Chen Q, Han Z, Jiang H, Tian D, Yang S (2010) Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. J Mol Evol 70:137–148

    Article  PubMed  CAS  Google Scholar 

  74. Wang HZ, Zhao PJ, Xu JC et al (2003) Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene. Acta Genet Sin 30:70–75

    PubMed  CAS  Google Scholar 

  75. KimTH Kunz HH, Bhattacharjee S et al (2012) Natural variation in small molecule-induced TIR-NB-LRR signalling induces root growth arrest via EDS1-and PAD4- complexed R protein VICTR in Arabidopsis. Plant Cell 24:5177–5192

    Article  Google Scholar 

  76. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed  PubMed Central  Google Scholar 

  77. Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  PubMed  CAS  Google Scholar 

  78. Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Voitsik AM, Muench S, Deising HB, Voll LM (2013) Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection. BMC Plant Biol 13:85

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Chen L, Zhang L, Li D, Wang F, Yu D (2013) WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 110(21):1963–1971

    Article  Google Scholar 

  81. Shin R, Han JH, Lee GJ, Paek KH (2002) The potential use of a viral coat protein gene as a transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgenic Res 11(215–219):17

    Google Scholar 

  82. Salomon D, Sessa G (2012) Biotechnological strategies for engineering plants with durable resistance to fungal and bacterial pathogens, Tel Aviv University, Israel 329–339

  83. Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C, Roby D (2002) A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proc Natl Acad Sci USA 99:10179–10184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  84. Kirsch C, Logemann E, Lippok B, Schmelzer E, Hahlbrock K (2001) A highly specific pathogen-responsive promoter element from the immediate-early activated CMPG1 gene in Petroselinum crispum. Plant J 26:217–227

    Article  PubMed  CAS  Google Scholar 

  85. Heise A, Lippok B, Kirsch C, Hahlbrock K (2002) Two immediate-early pathogen-responsive members of the AtCMPG gene family in Arabidopsis thaliana and the W-box containing elicitor-response element of AtCMPG1. Proc Natl Acad Sci USA 99:9049–9054

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  PubMed  CAS  Google Scholar 

  87. Rawal HC, Singh NK, Sharma TR (2013) Conservation, divergence, and genome-wide distribution of PAL and POX a gene families in plants. Int J Genomics, vol. 2013, Article ID 678969, 10 pages, 2013. doi:10.1155/2013/678969

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology (DBT), Ministry of Science and Technology, Govt. of India for providing research grant to R S Chauhan.

Ethical standards

The authors declare that the experiments comply with the current laws of the country.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder Singh Chauhan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Jaiswal, V., Chanumolu, S.K. et al. Mining whole genomes and transcriptomes of Jatropha (Jatropha curcas) and Castor bean (Ricinus communis) for NBS-LRR genes and defense response associated transcription factors. Mol Biol Rep 41, 7683–7695 (2014). https://doi.org/10.1007/s11033-014-3661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3661-0

Keywords

Navigation