Skip to main content
Log in

Map saturation and SNP marker development for the rust resistance genes (R 4 , R 5 , R 13a , and R 13b ) in sunflower (Helianthus annuus L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Sunflower rust, which is incited by the fungus Puccinia helianthi Schwein., is the most common disease in Australia, Argentina, South Africa, and North America. Three independent genes, R 5 , R 4 , and R 13 with two alleles R 13a and R 13b , were discovered in sunflower and are promising sources of resistance to rust. R 5 was previously mapped to linkage group (LG) 2, and R 4 and R 13 were mapped to LG13 of the sunflower genome using simple sequence repeat (SSR) markers. The objective of this study was to finely map R 5 , R 4 , R 13a , and R 13b using newly developed single nucleotide polymorphism (SNP) markers in four F2 populations previously used for SSR mapping. Of the 67 LG2 SNP markers screened, two SNPs, SFW03654 and NSA_000267, flanked R 5 at a genetic distance of 0.6 and 1.2 cM, respectively. This flanking narrowed the genetic interval containing R 5 from 5.1 to 1.8 cM in length. A total of 69 LG13 SNP markers were analyzed in the R 4 , R 13a , and R 13b populations. In the R 4 consensus map, the gene R 4 was flanked by seven SNP loci; three co-segregating SNPs are on one side (0.7 cM proximal) and four on the other side (0.6 cM distal). Similarly, SNP markers that are tightly linked to both R 13a and R 13b were identified. R 13a was flanked by SNP markers at genetic distances of 0.4 and 0.2 cM. The SNP SFW00757 co-segregated with R 13b , and another three co-segregating SNPs were 2.4 cM proximal to R 13b . A total of 368 F2 plants from the cross between a resistant BC3F2 plant carrying R 5 with HA-R6 carrying R 13a were first screened by SSR markers to identify “double-resistant” lines. Twelve F2 plants were identified to be homozygous for a combination of R 5 and R 13a , which was further confirmed with additional SNP markers developed in the present study. The double-resistant line developed in this study may provide a source of durable resistance to manage rust in confection sunflower production and will help mitigate selection pressure on each gene by the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin Gustafson JP, Lazo G, Chao S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD et al (2003) High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–865

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson LK, Lai A, Stack SM, Rizzonand C, Gaut BS (2006) Uneven distribution of expressed sequence tag loci on maize pachytene chromosomes. Genome Res 16:115–122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bachlava E, Radwan OE, Abratti G, Tang S, Gao W, Heesacker AF, Bazzalo ME, Zambelli A, Leon AJ, Knapp SJ (2011) Downy mildew (Pl 8 and Pl 14 ) and rust (R Adv ) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13. Theor Appl Genet 122:1211–1221

    Article  PubMed  Google Scholar 

  • Bachlava E, Taylor CA, Tang S, Bowers JE, Mandel JR, Burke JM, Knapp SJ (2012) SNP discovery and development of a high-density genotyping array for sunflower. PLoS One 7(1):e29814. doi:10.1371/journal.pone.0029814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. Genes Genomes Genet 2:721–729

    CAS  Google Scholar 

  • Bulos M, Vergani PN, Altieri E (2014) Genetic mapping, marker assisted selection and allelic relationships for the P u6 gene conferring rust resistance in sunflower. Breed Sci 64:206–212

    Article  PubMed Central  PubMed  Google Scholar 

  • Burke JM, Tang S, Knapp SJ, Rieseberg LH (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    PubMed Central  CAS  PubMed  Google Scholar 

  • Burke JM, Lai Z, Salmaso M, Nakazato T, Tang S, Heesacker A, Knapp SJ, Rieseberg LH (2004) Comparative mapping and rapid karyotypic evolution in the genus Helianthus. Genetics 167:449–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman MA, Pashley CH, Wenzler J, Hvala J, Tang S, Knapp SJ, Burke JM (2008) A genomic scan for selection reveals candidates for genes involved in the evolution of cultivated sunflower (Helianthus annuus L.). Plant Cell 20:2931–2945

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davar R, Darvishzadeh R, Majd A, Ghosta Y, Sarrafi A (2010) QTL mapping of partial resistance to basal stem rot in sunflower using recombinant inbred lines. Phytopathol Mediterr 49:330–341

    Google Scholar 

  • Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum B et al (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination ‘hot spots’. Genome Res 16:106–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duβle CM, Hahn V, Knapp SJ, Bauer E (2004) Pl Arg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109:1083–1086

    Article  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed Central  CAS  PubMed  Google Scholar 

  • Friskop A, Gulya T, Jordahl J, Ramsett M, Harveson R, Acevedo M, Harveson R, Markell S (2012) Determination of Puccinia helianthi races in the Unites States Northern Great Plains. In: Proceedings of the 18th international sunflower conference, Mardel plata & Balcarce, Argentina February 27–March 1, 2012, pp 214–218

  • Friskop AJ, Gulya TJ, Halley SA, Schatz BG, Schaefer JP, Jordahl JG, Meyer SM, Misek KW, Hendrickson PA, Markell SG (2015) Effect of fungicide and timing of application on management of sunflower rust. Plant Dis. doi:10.1094/PDIS-10-14-1036

    Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boiko EV (1996a) Identification and high-density mapping of gene rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gong L, Hulke BS, Gulya TJ, Markell SG, Qi LL (2013a) Molecular tagging of a novel rust resistance gene R 12 in sunflower (Helianthus annuus L.). Theor Appl Genet 126:93–99

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Gulya TJ, Markell SG, Hulke BS, Qi LL (2013b) Genetic mapping of rust resistance genes in confection sunflower line HA-R6 and oilseed line RHA 397. Theor Appl Genet 126:2039–2049

    Article  CAS  PubMed  Google Scholar 

  • Goulter KC (1990) Breeding of a rust differential sunflower line. In: Kochman JK (ed) Proceedings of the 8th Australian sunflower association workshop, 19–22 March, 1990. Australian Sunflower Association, Toowoomba, Australia, pp 120–124

  • Gulya TJ (1985) Registration of five disease-resistant sunflower germplasms. Crop Sci 25:719–720

    Google Scholar 

  • Gulya TJ (1997) Sunflower rust races in the United States in 1996. Phytopathology 87:S36

    Google Scholar 

  • Gulya TJ (2006) The sunflower rust situation: current races in the northern and central Great Plains, and resistance in oilseed and confection hybrids. In: Proceedings of the 28th sunflower research workshop. Fargo, ND, 11–12 January 2006. http://www.sunflowernsa.com/research/research-workshop/documents/Gulya_Rust_06.pdf

  • Gulya TJ, Markell S (2009) Sunflower rust status—2008. Race frequency across the midwest and resistance among commercial hybrids. http://www.sunflowernsa.com/uploads/Gulya_RustStatus_09.pdf

  • Gulya TJ, Miller J, Rashid K (1989) Rust races occurring in North America in 1988 and resistance of sunflower hybrids to race 1 and 3. In: Proceedings of the sunflower research workshop. Fargo, ND, pp 19–22, January 9–10

  • Gulya TJ, Venette R, Venette JR, Lamey HA (1990) Sunflower rust. NDSU Ext. Ser. Bull PP 998 Fargo, ND. http://www.ag.ndsu.edu/pubs/plantsci/rowcrops/pp998w.htm

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    Article  CAS  Google Scholar 

  • Heesacker A, Kishore VK, Gao W, Tang S, Kolkman JM, Gingle A, Matvienko M, Kozik A, Michelmore R, Lai Z et al (2008) SSRs and INDELs mined from the sunflower EST database: abundance, polymorphisms and cross-taxa utility. Theor Appl Genet 117:1021–1029

    Article  CAS  PubMed  Google Scholar 

  • Heesacker A, Brunick RL, Rieseberg LH, Burke JM, Knapp SJ (2009) Karyotypic evolution of the common and silverleaf sunflower genomes. Plant Genome 2:233–246

    Article  CAS  Google Scholar 

  • Hulke BS, Miller JF, Gulya TJ (2010) Registration of the restorer oilseed sunflower germplasm RHA 464 possessing genes for resistance to downy mildew and sunflower rust. J Plant Reg 4:249–254

    Article  Google Scholar 

  • Hulke BS, Grassa CJ, Bowers JE, Burke JM, Qi LL, Talukder ZI, Rieseberg LH (2015) A unified SNP map of sunflower (Helianthus annuus L.) derived from the Sunflower Genome Project resources. Crop Sci 55:1696–1702

    Article  CAS  Google Scholar 

  • Jan CC, Zhang M, Liu Z (2014) Molecular mapping of the rust resistance gene in sunflower germplasm line PH3. Presentation at the National Sunflower Association Research Forum, January 8–9, 2014. Fargo, ND. http://www.sunflowernsa.com/uploads/resources/701/molecular.mapping.rust_ccjan_2014_revised.pdf

  • Jia J, Devos KM, Chao S, Miller TE, Reader SM, Gale MD (1996) RFLP-based maps of the homoelogous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor Appl Genet 92:559–565

    Article  CAS  PubMed  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5(3):51–60

    CAS  Google Scholar 

  • Kochman JK, Goulter KC (1984) The occurrence of a second race of rust (Puccinia helianthi) in sunflower crops in eastern Australia. Australas Plant Path 13:3–4

    Article  Google Scholar 

  • Kong GA, Goulter KC, Kochman JK, Thompson SM (1999) Evolution of Puccinia helianthi pathotypes in Australia. Australas Plant Path 28:320–332

    Article  Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical RFLP maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed Central  PubMed  Google Scholar 

  • Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ, Rieseberg LH (2005) Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171:291–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambrides CJ, Miller JF (1994) Inheritance of rust resistance in a source of MC29 sunflower germplasm. Crop Sci 34:1225–1230

    Article  Google Scholar 

  • Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1998) Marker assisted selection for two rust resistance genes in sunflower. Mol Breed 4:227–234

    Article  CAS  Google Scholar 

  • Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC (2012) Molecular mapping of the Pl 16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower. Theor Appl Genet 125:121–131

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Lawrence GJ, Ellis JG (2011) The application of DNA marker and doubled-haploid technology for stacking multiple stem rust resistance genes in wheat. Mol Breed 27:329–335

    Article  Google Scholar 

  • Markell S, Gulya T, McKay K, Hutter M, Hollingsworth C, Ulstad V, Koch R, Knudsvig A (2009) Widespread occurrence of the aecial stage of sunflower rust caused by Puccinia helianthi in North Dakota and Minnesota in 2008. Plant Dis 93:668–669

    Article  Google Scholar 

  • Miah MAJ, Sackston WE (1970) Genetics of host-pathogen interaction in sunflower. Phytoprotection 51:1–16

    Google Scholar 

  • Micic Z, Hahn V, Bauer E, Schön CC, Knapp SJ, Tang S, Melchinger AE (2004) QTL mapping of Sclerotinia mid-stalk rot resistance in sunflower. Theor Appl Genet 109:1474–1484

    Article  CAS  PubMed  Google Scholar 

  • Micic Z, Hahn V, Bauer E, Schön CC, Melchinger AE (2005a) QTL mapping of resistance to Sclerotinia mid-stalk rot in RIL of sunflower population NDBLOSsel × CM625. Theor Appl Genet 110:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Micic Z, Hahn V, Bauer E, Melchinger AE, Knapp SJ, Tang S, Schön CC (2005b) Identification and validation of QTL for Sclerotinia mid-stalk rot resistance in sunflower by selective genotyping. Theor Appl Genet 111:233–242

    Article  CAS  PubMed  Google Scholar 

  • Miller JF, Gulya TJ (1997) Registration of eight maintainer (HA 393, HA 394 and HA 402 to HA 407) and seven restorer (RHA 395 to RHA 401) sunflower germplasm lines. Crop Sci 37:1988–1989

    Article  Google Scholar 

  • Miller JF, Gulya TJ (2001) Registration of three rust resistant sunflower germplasm populations. Crop Sci 41:601

    Article  Google Scholar 

  • Miller JF, Rodriguez RH, Gulya TJ (1988) Evaluation of genetic materials for inheritance of resistance to Race 4 rust in sunflower. In: Proceedings of the 12th international sunflower conference, Novi Sad, Yugoslavia, 25–29 July, 1988. International Sunflower Association Paris, France, pp 361–365

  • Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  • Moreno PS, de Romano AB, Romano MC, Vergani P, Sposaro M, Bulos M, Altieri E, Ramos ML, Sala C (2012) A survey of physiological races of Puccinia helianthi in Argentina. In: Proceedings of the 18th international sunflower conference, Mardel plata & Balcarce, Argentina Feb 27–Mar 1, 2012, pp 278–279

  • Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC (2009) Inheritance and molecular mapping of a downy mildew resistance gene, Pl 13 in cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 119:795–803

    Article  CAS  PubMed  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  CAS  PubMed  Google Scholar 

  • Paniego N, Echaide M, Munoz M, Fernandez L, Torales S, Faccio P, Fuxan I, Carrera M, Zandomeni R, Suarez E et al (2002) Microsatellite isolation and characterization in sunflower (Helianthus annuus L.). Genome 45:34–43

    Article  CAS  PubMed  Google Scholar 

  • Paull JG, Pallota MA, Langridge P, The TT (1994) RFLP markers associated with Sr22 and recombination between chromosome 7A of bread wheat and the diploid species Triticum boeotium. Theor Appl Genet 89:1039–1045

    CAS  PubMed  Google Scholar 

  • Pegadaraju V, Nipper R, Hulke BS, Qi LL, Schultz Q (2013) De novo sequencing of the sunflower genome for SNP discovery using the RAD (restriction site associated DNA) approach. BMC Genom 14:556

    Article  CAS  Google Scholar 

  • Powell W, Machray GC, Proven J (1996) Polymorphism revealed by simple sequence repeats. Trends Plant Sci 1:215–222

    Article  Google Scholar 

  • Putt ED, Sackston WE (1963) Studies on sunflower rust. IV. Two genes, R1 and R2 for resistance in the host. Can J Plant Sci 43:490–496

    Article  Google Scholar 

  • Qi LL, Gulya TJ, Seiler GJ, Hulke BS, Vick BA (2011a) Identification of resistance to new virulent races of rust in sunflowers and validation of DNA markers in the gene pool. Phytopathology 101:241–249

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Hulke BS, Vick BA, Gulya TJ (2011b) Molecular mapping of the rust resistance gene R 4 to a large NBS-LRR cluster on linkage group 13 of sunflower. Theor Appl Genet 123:351–358

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Gulya TJ, Hulke BS, Vick BA (2012a) Chromosome location, DNA markers and rust resistance of the sunflower gene R 5 . Mol Breed 30:745–756

    Article  CAS  Google Scholar 

  • Qi LL, Seiler GJ, Hulke BS, Vick BA, Gulya TJ (2012b) Genetics and mapping of the R 11 gene conferring resistance to recently emerged rust races, tightly linked to male fertility restoration, in sunflower (Helianthus annuus L.). Theor Appl Genet 125:921–932

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Ma GJ, Long YM, Hulke BS, Markell SG (2015a) Relocation of a rust resistance gene R 2 and its marker-assisted gene pyramiding in confection sunflower (Helianthus annuus L.). Theor Appl Genet 128:477–488

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ (2015b) Pl 17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 128:757–767

    Article  CAS  PubMed  Google Scholar 

  • Saintenac C, Falque M, Martin OC, Paux E, Feuillet C, Sourdille P (2009) Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat (Triticum aestivum L.). Genetics 181:393–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • See DR, Brooks SA, Nelson JC, Brown-Guedira GL, Friebe B, Gill BS (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci USA 103:4162–4167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seiler GJ (2010) Utilization of wild Heliathus species in breed for disease resistance. In: Proceedings of the international symposium “sunflower breeding on resistance to diseases”. Krasnodar, Russia, June 23–24, 2010, pp 37–51

  • Sendall BC, Kong GA, Goulter KC, Aitken EAB, Thompson SM, Mitchell JHM, Kochman JK, Lawson W, Shatte T, Gulya TJ (2006) Diversity in the sunflower: Puccinia helianthi patho system in Australia. Australas Plant Path 35:657–670

    Article  Google Scholar 

  • Servin B, Martin OC, Mézard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh S, Sidhu JS, Huang N, Vikal Y, Li Z, Brar DS, Dhaliwal HS, Khush GS (2001) Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet 102:1011–1015

    Article  CAS  Google Scholar 

  • Talia P, Nishinakamasu V, Hopp HE, Heinz RA, Paniego N (2010) Genetic mapping of EST-SSR, SSR and InDel to improve saturation of genomic regions in a previously developed sunflower map. Electron J Biotechnol 13:1–14

    Article  Google Scholar 

  • Talukder ZI, Gong L, Hulke BS, Pegadaraju V, Song QJ, Schultz Q, Qi LL (2014) A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R 12 . PLoS One 9(7):e98628. doi:10.1371/journal.pone.0098628

    Article  PubMed Central  PubMed  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW et al (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed Central  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into flesh fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R, Leister D, Schulze-Lefert P, Wise RP (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed Central  CAS  PubMed  Google Scholar 

  • Werner K, Friedt W, Ordon F (2005) Strategies for pyramiding resistance genes against the barley yellow mosaic virus complex (BaMMV, BaYMV, BaYMV-2). Mol Breed 16:45–55

    Article  CAS  Google Scholar 

  • Wu J, Mizuno H, Hayashi-Tsugane M, Ito Y, Chiden Y et al (2003) Physical maps and recombination frequency of six rice chromosomes. Plant J 36:720–730

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, Röder MS, Fahoum A, Fahima T (2012) Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 29:399–412

    Article  CAS  Google Scholar 

  • Yang SM, Antonelli EF, Luciano A, Luciani ND (1986) Reactions of Argentine and Australian Sunflower rust differentials to four North American cultures of Puccinia helianthi from North Dakota. Plant Dis 70:883–886

    Article  Google Scholar 

  • Yang SM, Dowler WM, Luciano A (1989) Gene Pu 6 : a new gene in sunflower for resistance to Puccinia helianthi. Phytopathology 79:474–477

    Article  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M et al (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

  • Yue B, Radi SA, Vick BA, Cai X, Tang S, Knapp SJ, Gulya TJ, Miller JF, Hu J (2008) Identifying quantitative trait loci for resistance to Sclerotinia head rot in two USDA sunflower germplasms. Phytopathology 98:926–931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Loren Rieseberg for providing access to the Sunflower Genome Data Repository. We also thank Drs. Xiwen Cai and Hongxia Wang for critical review of the manuscript, and Angelia Hogness for technical assistance. This project was supported by the USDA-AMS Specialty Crop Block Grant Program 12-25-B-1480, and the USDA-ARS CRIS Project No. 5442-21000-039-00D. Mention of trade names or commercial products in this report is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The experiments were performed in compliance with the current laws of the USA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 14 kb)

Supplementary material 2 (XLSX 18 kb)

Supplementary material 3 (XLSX 13 kb)

Supplementary material 4 (XLSX 10 kb)

Supplementary material 5 (XLSX 12 kb)

Supplementary material 6 (XLSX 11 kb)

11032_2015_380_MOESM7_ESM.tif

Supplementary material 7 Fig. S1 PCR amplification of markers SFW03564-R 5 (a) and ZVG61-R 13a (b) in parental lines, HA 89, CONFSCLB1, HA-R2, and HA-R6, and 12 double-resistant F2 plants. The double-resistant F2 plants show HA-R2 (R 5 ) and HA-R6 (R 13a ) alleles in a and b, respectively. (TIFF 382 kb)

11032_2015_380_MOESM8_ESM.tif

Supplementary material 8 Fig. S2 Reliability of selection using single and flanking markers (assuming no crossover interference). The recombination frequency between the target locus and marker A is approximately 5 % (5 cM). Therefore, recombination may occur between the target locus and marker in approximately 5 % of the progeny. The recombination frequency between the target locus and marker B is approximately 4 % (4 cM). The chance of recombination occurring between both marker A and marker B (i.e., double crossover) is much lower than for single markers (approx. 0.4 %). Therefore, the reliability of selection is much greater when flanking markers are used. Adapted from Bertrand et al. (2008). (TIFF 684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L.L., Long, Y.M., Ma, G.J. et al. Map saturation and SNP marker development for the rust resistance genes (R 4 , R 5 , R 13a , and R 13b ) in sunflower (Helianthus annuus L.). Mol Breeding 35, 196 (2015). https://doi.org/10.1007/s11032-015-0380-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0380-8

Keywords

Navigation