Skip to main content
Log in

Downy mildew (Pl 8 and Pl 14 ) and rust (R Adv ) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Nucleotide binding site-leucine rich repeat (NBS-LRR) proteins are encoded by a ubiquitous gene family in sunflower and frequently harbor disease resistance genes. We investigated NBS-LRR-encoding resistance gene candidates (RGCs) flanking the downy mildew resistance genes Pl 8 and Pl 14 and the rust resistance gene R Adv , which map on the NBS-LRR clusters of linkage groups 1 and 13 in sunflower genome. We shotgun sequenced bacterial artificial chromosome (BAC) clones proximal to Pl 8 , Pl 14 , and R Adv and identified seven novel non-Toll/interleukin-1 receptor (TIR)-like NBS-LRR RGCs, which clustered with previously identified RGCs of linkage group 13 but were phylogenetically distant from the TIR- and non-TIR-NBS-LRR-encoding superfamilies of sunflower. Six of the seven predicted RGCs have intact open reading frames and reside in genomic segments with abundant transposable elements. The genomic localization and sequence similarity of the novel non-TIR-like predicted RGCs suggests that they originated from tandem duplications. RGCs in the proximity of Pl 8 and R Adv were likely introgressed from silverleaf sunflower genome, where the RGC cluster of linkage group 13 is duplicated in two independent chromosomes that have different architecture and level of recombination from the respective common sunflower chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Khatib K, Miller J (2000) Registration of four stocks of sunflower resistant to imidazolinone herbicides. Crop Sci 40:869–870

    Google Scholar 

  • Bert PF, De Labrouhe DT, Philippon J, Mouzeyar S, Jouan I, Nicolas P, Vear F (2001) Identification of a second linkage group carrying genes controlling resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.). Theor Appl Genet 103:992–997

    Article  CAS  Google Scholar 

  • Bouzidi MF, Badaoui S, Cambon F, Vear F, De Labrouhe DT, Nicolas P, Mouzeyar S (2002) Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers. Theor Appl Genet 104:592–600

    Article  PubMed  CAS  Google Scholar 

  • Brahm L, Rocher T, Friedt W (2000) PCR-based markers facilitating marker assisted selection in sunflower for resistance to downy mildew. Crop Sci 40:676–682

    Article  CAS  Google Scholar 

  • Burge C, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  PubMed  CAS  Google Scholar 

  • Choi S, Wing RA (2000) The construction of bacterial artificial chromosome (BAC) libraries. In: Gelvin S, Schilperoort R (eds) Plant molecular biology manual, 2nd edn. Kluwer Academic, The Netherlands, pp 1–32

    Google Scholar 

  • DuBle CM, Hahn V, Knapp SJ, Bauer E (2004) PI Arg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower. Theor Appl Genet 109:1083–1086

    Article  Google Scholar 

  • Ewing B, Green P (1998) Basecalling of automated sequencer traces using Phred. II. Error probablilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fick GN, Zimmer DE (1975) Linkage tests among genes for six qualitative characters in sunflowers. Crop Sci 15:777–779

    Article  Google Scholar 

  • Gedil MA, Slabaugh MB, Berry S, Johnson R, Michelmore R, Miller J, Gulya T, Knapp SJ (2001) Candidate disease resistance genes in sunflower cloned using conserved nucleotide-binding site motifs: genetic mapping and linkage to the downy mildew resistance gene Pl 1. Genome 44:205–212

    Article  PubMed  CAS  Google Scholar 

  • Gentzbittel L, Mouzeyar S, Badaoui S, Mestries E, Vear F, De Labrouhe DT, Nicolas P (1998) Cloning of molecular markers for disease resistance in sunflower, Helianthus annuus L. Theor Appl Genet 96:519–525

    Article  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systemat Biol 52:696–704

    Article  Google Scholar 

  • Gulya T (1985) Registration of five disease-resistant sunflower germplasms. Crop Sci 25:719–720

    Google Scholar 

  • Gulya T, Rashid KY, Masirevic SM (1997) Sunflower diseases. In: Schneiter AA (ed) Sunflower technology and production. American Society of Agronomy, Madison, pp 263–379

    Google Scholar 

  • Haft DH, Selengut JD, White O (2003) The TIGRFAMs database of protein families. Nucleic Acids Res 31:371–373

    Article  PubMed  CAS  Google Scholar 

  • He J, Dai X, Zhao X (2007) PLAN: a web platform for high-throughput BLAST searches and for managing and mining results. BMC Bioinformatics 8:53

    Article  PubMed  Google Scholar 

  • Heesacker A, Bachlava E, Brunick RL, Burke JM, Rieseberg LH, Knapp SJ (2009) Karyotypic evolution of the common and silverleaf sunflower genomes. The Plant Genome 2:233–246

    Article  CAS  Google Scholar 

  • Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (1997) Gene families: the taxonomy of protein paralogs and chimeras. Science 278:609–614

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  PubMed  CAS  Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Ann Rev Phytopathol 39:285–312

    Article  CAS  Google Scholar 

  • Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche B, De Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJA (2007) The 20 years of PROSITE. Nucleic Acids Res. doi:10.1093/nar/gkm977

    Google Scholar 

  • Kochman WD, Goulter KC (1985) A proposed system for identifying cultures of sunflower rust. In: Proceedings of the 11th Australian sunflower conference, vol 2. ISA, Mar del Plata, Argentina, pp 391–396

    Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK (1998) Marker-assisted selection for two rust resistance genes in sunflower. Mol Breeding 4:227–234

    Article  CAS  Google Scholar 

  • Leister D (2004) Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends Genet 20:116–122

    Article  PubMed  CAS  Google Scholar 

  • Letunic I, Bork P (2007) Interactive Tree of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  PubMed  CAS  Google Scholar 

  • Lomsadze A, Ter-Hovhannisyan V, Chernoff Y, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33:6494–6506

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • McDowell JM, Woffenden BJ (2003) Plant disease resistance genes: recent insights and potential applications. Trends Plant Biotechnol 21:178–183

    Article  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptive guards. Genome Biol 7:212

    Article  PubMed  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plant J 20:317

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    Article  PubMed  CAS  Google Scholar 

  • Meyers BC, Kaushik S, Nandety RS (2005) Evolving disease resistance genes. Curr Opin Plant Biol 8:129–134

    Article  PubMed  CAS  Google Scholar 

  • Michelmore R, Meyers BC (1998) Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8:1113–1130

    PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis—a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Gulya TJ (1988) Registration of 6 downy mildew resistant sunflower germplasm lines. Crop Sci 28:1040–1041

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1991) Inheritance of resistance to race 4 of downy mildew derived from interspecific crosses in sunflower. Crop Sci 31:40–43

    Article  Google Scholar 

  • Miller JF, Gulya TJ (1995) Four maintainer (HA382 to 385) and four restorer (RHA386 to RHA389) sunflower germplasm lines. Crop Sci 35:286

    Article  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full-genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Mouzeyar S, De Labrouhe DT, Vear F (1993) Histopathological studies of resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii). J Phytopathol 139:289–297

    Article  Google Scholar 

  • Mouzeyar S, De Labrouhe DT, Vear F (1994) Effect of host-race combination on resistance of sunflower. Helianthus annuus L., to downy mildew Plasmopara halstedii. J Phytopathol 141:249–258

    Article  Google Scholar 

  • Mouzeyar S, Roeckeldrevet P, Gentzbittel L, Philippon J, De Labrouhe DT, Vear F, Nicolas P (1995) RFLP and RAPD mapping of the sunflower Pl 1 locus for resistance to Plasmopara halstedii race 1. Theor Appl Genet 91:733–737

    Article  CAS  Google Scholar 

  • Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH (2000) Construction of plant bacterial artificial chromosome (BAC) libraries: an illustrated guide. J Agr Genom 5:1–100. (http://www.mgel.msstate.edu/pubs/Peterson%20et%20al%202000.pdf)

    Google Scholar 

  • Plocik A, Layden J, Kesseli R (2004) Comparative analysis of NBS domain sequences of NBS-LRR disease resistance genes from sunflower, lettuce, and chicory. Mol Phylogenet Evol 31:153–163

    Article  PubMed  CAS  Google Scholar 

  • Quresh Z, Jan C-C (1993) Allelic relationships among genes for resistance to sunflower rust. Crop Sci 33:235–238

    Article  Google Scholar 

  • Radwan O, Bouzidi MF, Vear F, Philippon J, De Labrouhe DT, Nicolas P, Mouzeyar S (2003) Identification of non-TIR-NBS-LRR markers linked to the Pl 5 /Pl 8 locus for resistance to downy mildew in sunflower. Theor Appl Genet 106:1438–1446

    PubMed  CAS  Google Scholar 

  • Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S (2004) Development of PCR markers for the Pl 5 /Pl 8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences. Theor Appl Genet 109:176–185

    Article  PubMed  CAS  Google Scholar 

  • Radwan O, Gandhi S, Heesacker A, Whitaker B, Taylor C, Plocik A, Kesseli R, Kozik A, Michelmore R, Knapp SJ (2008) Genetic diversity and genomic distribution of homologs encoding NBS-LRP disease resistance proteins in sunflower. Mol Genet Genom 280:111–125

    Article  CAS  Google Scholar 

  • Rahim M, Jan CC, Gulya TJ (2002) Inheritance of resistance to sunflower downy mildew races 1, 2 and 3 in cultivated sunflower. Plant Breed 121:57–60

    Article  Google Scholar 

  • Richter TE, Ronald PC (2000) The evolution of disease resistance genes. Plant Mol Biol 42:195–204

    Article  PubMed  CAS  Google Scholar 

  • Roeckel-Drevet P, Gagne G, Mouzeyar S, Gentzbittel L, Philippon J, Nicolas P, De Labrouhe DT, Vear F (1996) Colocation of downy mildew (Plasmopara halstedii) resistance genes in sunflower (Helianthus annuus L). Euphytica 91:225–228

    CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  PubMed  CAS  Google Scholar 

  • Slabaugh MB, Yu JK, Tang SX, Heesacker A, Hu X, Lu GH, Bidney D, Han F, Knapp SJ (2003) Haplotyping and mapping a large cluster of downy mildew resistance gene candidates in sunflower using multilocus intron fragment length polymorphisms. Plant Biotech J 1:167–185

    Article  CAS  Google Scholar 

  • Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. Bioinformatics 13:523–535

    Article  CAS  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, De Clerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) Joinmap® 3.0 : Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands

    Google Scholar 

  • Vear F, Garreyn M, De Labrouhe DT (1997) Inheritance of resistance to phomopsis (Diaporthe helianthi) in sunflower. Plant Breed 116:277–281

    Article  Google Scholar 

  • Webb DM, Knapp SJ (1990) DNA extraction from a previously recalcitrant plant genus. Plant Mol Biol Rep 8:180–185

    Article  CAS  Google Scholar 

  • Wieckhorst S, Bachlava E, DuBle CM, Tang S, Gao W, Saski C, Knapp SJ, Schon CC, Hahn V, Bauer E (2010) Fine mapping of the sunflower resistance locus Pl Arg introduced from the wild species Helianthus argophyllus. Theor Appl Genet 121:1633–1644

    Article  PubMed  CAS  Google Scholar 

  • Yang S-M, Antonelli EF, Luciano A, Luciani ND (1986) Reactions of Argentine and Australian sunflower rust differentials to four North American cultures of Puccinia helianthi from North Dakota. Plant Dis 70:883–886

    Article  Google Scholar 

  • Yang SM, Dowler WM, Luciano A (1989) Gene Pu6: a new gene in sunflower for resistance to Puccinia helianthi. Phytopathology 79:474–477

    Article  Google Scholar 

  • Yeh R-F, Lim LP, Burge CB (2001) Computational inference of homologous gene structures in the human genome. Genome Res 11:803–816

    Article  PubMed  CAS  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L, Edwards KJ, Berry S, Leon AJ, Grondona M, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

  • Zdobnov EM, Apweiler R (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the United States Department of Agriculture Plant Genome Program (no. 2000-04292) and the National Science Foundation Plant Genome Program (no. 0421630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Bachlava.

Additional information

Communicated by T. Close.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

BAC-end sequences (BESs) of all positive BAC clones from contigs flanking Pl 8 , R Adv and Pl 14 genes, and their best BLAST hit, if applicable (PDF 13 kb)

ESM 2

RGCs of linkage groups 1 and 13 genotyped in IMISUN-1 × 29004 and ZENB8 x RHA340 populations. The table includes marker type, GenBank accession, forward and reverse primers for amplification of each RGC and the motif corresponding to the amplified region (PDF 59 kb)

ESM 3

Maximum likelihood tree including the 783 previously identified TIR- and non-TIR-NBS-LRR-encoding RGCs of sunflower (Radwan et al. 2008) and seven putative RGCs mined from P102A12, P408L01 and P339N08. One of the 100 maximum likelihood trees was randomly chosen to demonstrate the actual branch lengths corresponding to evolutionary distance that cannot be deduced from the consensus tree (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachlava, E., Radwan, O.E., Abratti, G. et al. Downy mildew (Pl 8 and Pl 14 ) and rust (R Adv ) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13. Theor Appl Genet 122, 1211–1221 (2011). https://doi.org/10.1007/s00122-010-1525-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1525-0

Keywords

Navigation