Skip to main content
Log in

Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought is a major stress which can seriously limit yield in many crops including barley. Wild barley introgression lines (ILs) like the S42IL library may enhance drought stress tolerance of barley cultivars through the introduction of exotic alleles. The S42IL library was already characterized with 636 Illumina SNPs. New approaches like genotyping by sequencing (GBS) are available for barley to enhance the characterization of ILs. We generated an improved genetic map of the S42IL library, consisting of 4,201 SNPs by adding GBS data. The new map with a total length of 989.2 cM confirmed the extent of wild barley introgressions. Adding GBS data increased the resolution of the S42IL map tenfold from 0.4 to 4.2 markers/cM. This may assist to select possible candidate genes that improve drought tolerance. In four greenhouse experiments, juvenile drought stress response of 52 barley S42ILs was tested to identify quantitative trait loci (QTL). Thirteen S42ILs showed effects for plant biomass and leaf senescence. Subsequently, two verification experiments were conducted with these S42ILs. Nine out of eleven QTL were verified, and 22 additional QTL were detected. For 21 QTL, the Hsp allele increased trait performance, indicating the value of wild barley introgressions. For example, S42IL-107 and S42IL-123 produced more biomass under drought. Two different water-saving strategies were observed. S42IL-143 and S42IL-129 both revealed increased relative water content under drought. While S42IL-143 reduced biomass under drought, S42IL-129 maintained a high biomass production. We recommend using S42IL-107, S42IL-123 and S42IL-129 in barley breeding programs to enhance drought tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baum M, Grando S, Backes G et al (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross “Arta” xH. spontaneum41-1. Theor Appl Genet 107:1215–1225. doi:10.1007/s00122-003-1357-2

    Article  PubMed  CAS  Google Scholar 

  • Becker H (2011) Pflanzenzüchtung, 2nd edn. Verlag Eugen Ulmer, Stuttgart

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168. doi:10.1071/AR05069

    Article  Google Scholar 

  • Borràs-Gelonch G, Slafer GA, Casas AM et al (2010) Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Res 119:36–47. doi:10.1016/j.fcr.2010.06.013

    Article  Google Scholar 

  • Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74. doi:10.1046/j.1469-8137.1997.00831.x

    Article  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:13. doi:10.1186/1471-2164-10-582

    Article  Google Scholar 

  • Deng W, Nickle DC, Learn GH et al (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336. doi:10.1093/bioinformatics/btm331

    Article  PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. doi:10.1371/journal.pone.0019379

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. 1. Grain yield responses. Aust J Agric Res 29:897–912. doi:10.1071/ar9780897

    Article  Google Scholar 

  • Guo P, Baum M, Varshney RK et al (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214. doi:10.1007/s10681-007-9629-6

    Article  CAS  Google Scholar 

  • Gyenis L, Yun SJ, Smith KP et al (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723. doi:10.1139/G07-054

    Article  PubMed  CAS  Google Scholar 

  • Hafid ElR, Smith DH, Karrou M, Samir K (1998) Root and shoot growth, water use and water use efficiency of spring durum wheat under early-season drought. Agronomie 18:181–195. doi:10.1051/agro:19980302

    Article  Google Scholar 

  • Hoffmann A, Maurer A, Pillen K (2012) Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system. BMC Genet. doi:10.1186/1471-2156-13-88

    PubMed  PubMed Central  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047. doi:10.1371/journal.pone.0097047

    Article  PubMed  PubMed Central  Google Scholar 

  • Institute SAS (2008) The SAS enterprise guide for Windows, release 4.2. SAS Institute, Cary

    Google Scholar 

  • Jana S, Wilen RW (2005) Breeding for abiotic stress tolerance in barley. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Food Products Press

  • Karsai I, Meszaros K, Szucs P et al (2006) The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative X winter barley (Hordeum vulgare L.) mapping population. Plant Breed 125:468–472. doi:10.1111/j.1439-0523.2006.01266.x

    Article  CAS  Google Scholar 

  • Kumagai E, Araki T, Kubota F (2009) Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Prod Sci 12:50–53

    Article  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ et al (2011) The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res 120:161–168. doi:10.1016/j.fcr.2010.09.011

    Article  Google Scholar 

  • Lakew B, Henry RJ, Eglinton J et al (2013) SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp. vulgare). Euphytica 191:231–243. doi:10.1007/s10681-012-0795-9

    Article  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

  • Li JZ, Huang XQ, Heinrichs F et al (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466. doi:10.1139/G05-128

    Article  PubMed  CAS  Google Scholar 

  • López-Castañeda C, Richards RA (1994) Variation in temperate cereals in rain-fed environments II. Phasic development and growth. Field Crops Res 37:63–75. doi:10.1016/0378-4290(94)90082-5

    Article  Google Scholar 

  • Lu ZJ, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952. doi:10.1093/jexbot/49.329.1945

    Article  CAS  Google Scholar 

  • Lu F, Lipka AE, Glaubitz J et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. doi:10.1371/journal.pgen.1003215

    Google Scholar 

  • Ma BL, Morrison MJ, Voldeng HD (1995) Leaf greenness and photosynthetic rates in soybean. Crop Sci 35:1411–1414

    Article  Google Scholar 

  • Mascher M, Wu S, Amand PS et al (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi:10.1371/journal.pone.0076925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mayer KFX, Waugh R, Brown JWS et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi:10.1038/nature11543

    PubMed  CAS  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249. doi:10.3835/plantgenome2011.08.0023

    Article  Google Scholar 

  • Pennisi E (2008) Plant genetics: the blue revolution, drop by drop, gene by gene. Science 320:171–173. doi:10.1126/science.320.5873.171

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352. doi:10.1007/s00122-003-1253-9

    Article  PubMed  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE. doi:10.1371/journal.pone.0032253

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636. doi:10.1073/pnas.0709453104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saal B, von Korff M, Leon J, Pillen K (2011) Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL x nitrogen interaction effects for yield-related traits. Euphytica 177:223–239. doi:10.1007/s10681-010-0252-6

    Article  Google Scholar 

  • Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427. doi:10.1007/s00122-009-0991-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmalenbach I, Koerber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106. doi:10.1007/s00122-008-0847-7

    Article  PubMed  Google Scholar 

  • Schmalenbach I, Leon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497. doi:10.1007/s00122-008-0915-z

    Article  PubMed  CAS  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T et al (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locusthresh-1 using the Illumina GoldenGate Assay. G3 1:187–196. doi:10.1534/g3.111.000182

  • Schnaithmann F, Pillen K (2013) Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. Euphytica 189:67–88. doi:10.1007/s10681-012-0711-3

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203. doi:10.1007/s001220050114

    Article  PubMed  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. doi:10.1126/science.1183700

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, Monneveux P, Wery J et al (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107

    Article  Google Scholar 

  • Teulat B, Zoumarou-Wallis N, Rotter B et al (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. doi:10.1007/s00122-003-1417-7

    Article  PubMed  CAS  Google Scholar 

  • Tyagi K, Park MR, Lee HJ et al (2011a) Fertile crescent region as source of drought tolerance at early stage of plant growth of wild barley (Hordeum vulgare L. ssp. spontaneum). Pak J Bot 43:475–486

    Google Scholar 

  • Tyagi K, Park MR, Lee HJ et al (2011b) Diversity for seedling vigor in wild barley (Hordeum vulgare L. subsp spontaneum) Germplasm. Pak J Bot 43:2167–2173

    Google Scholar 

  • Ullrich SE (2011) Significance, adaptation, production, and trade of barley. In: Ullrich SE (ed) Barley: production, improvement, and uses, 1st edn. Blackwell, New York, pp 3–13

    Chapter  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745. doi:10.1007/s00122-004-1818-2

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590. doi:10.1007/s00122-005-2049-x

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231. doi:10.1007/s00122-006-0223-4

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93. doi:10.1007/s11032-007-9110-1

    Article  Google Scholar 

  • von Korff M, Leon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464. doi:10.1007/s00122-010-1401-y

    Article  Google Scholar 

  • Wang G, Schmalenbach I, von Korff M et al (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC(2)DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574. doi:10.1007/s00122-010-1276-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. doi:10.1038/35103589

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the team of Australian Genome Research Facility Ltd., St. Lucia, QLD, Australia, for carrying out the sequencing of the S42ILs. This work was supported by the Interdisciplinary Centre for Crop Plant Research (IZN), Halle (Saale) and by the Joint Research Co-operation Scheme, of the German Academic Exchange Service (DAAD, ID 54391967) and the Group of Eight, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pillen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honsdorf, N., March, T.J., Hecht, A. et al. Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines. Mol Breeding 34, 1475–1495 (2014). https://doi.org/10.1007/s11032-014-0131-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0131-2

Keywords

Navigation