Skip to main content
Log in

Diversity, specificity and impacts on field epidemics of QTLs involved in components of quantitative resistance in the wheat leaf rust pathosystem

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Quantitative resistance is generally associated with several genes, located in quantitative trait loci (QTLs). Although often described as non-isolate-specific and durable, some cases of erosion of this resistance have been observed. The likelihood of an erosion of quantitative resistance could be reduced, provided that this resistance rests on diversified mechanisms. We hypothesized that QTLs phenotypically expressed on different components, govern different mechanisms of resistance. A doubled haploid population of 91 lines, derived from a cross between the wheat cultivars Apache and Balance, was used to identify leaf rust resistance QTLs. After establishing a linkage map with 355 markers, 13 QTLs were found involved in field resistance, for over 2 years in two locations. Ten of these QTLs were associated with five resistance components (infection efficiency, latent period, lesion size, spore production per lesion and spore production per unit of sporulating tissue) measured in two greenhouse experiments. All but one of the QTLs found in the greenhouse were associated with one or two resistance components, supporting the hypothesis that different genetic factors are mostly involved in the expression of different resistance components. Analyzing separately different field scoring dates revealed QTLs involved at different stages of the epidemic. The QTLs displayed different degrees of isolate-specificity on field resistance, as measured by LOD scores and R 2, leading to the conclusion that isolate-specificity is both a qualitative and quantitative feature of quantitative resistance. A profile of each QTL was drawn, to evaluate its usefulness according to the objectives of the breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adhikari TB, Wallwork H, Goodwin SB (2004) Microsatellite markers linked to the Stb2 and Stb3 genes for resistance to Septoria tritici blotch in wheat. Crop Sci 44:1403–1411

    Article  CAS  Google Scholar 

  • Azzimonti G, Lannou C, Sache I, Goyeau H (2013) Components of quantitative resistance to leaf rust in wheat cultivars: diversity, variability and specificity. Plant Pathol 62:970–981

    Article  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J, Miah H, Howes N, McIntyre CL (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Broers LHM, Jacobs T (1989) The inheritance of host plant effect on latency period of wheat leaf rust in spring wheat. II: number of segregating factors and evidence for trangressive segregation in F3 and F5 generations. Euphytica 44:207–214

    Article  Google Scholar 

  • Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  • Carollo V, Matthews DE, Lazo GR, Blake TK, Hummel DD, Lui N, Hane DL, Anderson OD (2005) GrainGenes 2.0. An improved resource for the small-grains community. Plant Physiol 139:643–651. http://wheat.pw.usda.gov

    Google Scholar 

  • Christopher MD, Liu S, Hall MD, Marshall DS, Fountain MO, Johnson JW, Milus EA, Garland-Campbell KA, Chen X, Griffey CA (2013) Identification and mapping of adult-plant stripe rust resistance in soft red winter wheat cultivar ‘USG 3555’. Plant Breed 132:53–60

    Article  CAS  Google Scholar 

  • Chu CG, Friesen TL, Xu SS, Faris JD, Kolmer JA (2009) Identification of novel QTLs for seedling and adult plant leaf rust resistance in a wheat doubled haploid population. Theor Appl Genet 119:263–269

    Article  PubMed  Google Scholar 

  • Chung CL, Longfellow J, Walsh E, Kerdieh Z, Van Esbroeck G, Balint-Kurti P, Nelson R (2010) Resistance loci affecting distinct stages of fungal pathogenesis: use of introgression lines for QTL mapping and characterization in the maize—Setosphaeria turcica pathosystem. BMC Plant Biol 10:103

    Article  PubMed Central  PubMed  Google Scholar 

  • Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  Google Scholar 

  • Das MK, Rajaram S, Kronstad WE, Mundt CC, Singh RP (1993) Associations and genetics of three components of slow rusting in leaf rust of wheat. Euphytica 68:99–109

    Article  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Negre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–225

    Article  CAS  Google Scholar 

  • Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341

    Article  Google Scholar 

  • Gonzáles AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086–1093

    Article  Google Scholar 

  • Goudemand E, Laurent VR, Duchalais L, Tabib Ghaffary S, Kema GJ, Lonnet P, Margalé E, Robert O (2013) Association mapping and meta-analysis: two complementary approaches for the detection of reliable Septoria tritici blotch quantitative resistance in bread wheat (Triticum aestivum L.). Mol Breed 32:563–584

    Article  CAS  Google Scholar 

  • Hackett C (2002) Statistical methods for QTL mapping in cereals. Plant Mol Biol 48:585–599

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2011) New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122:239–249

    Article  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan CX, Lagudah ES (2012) Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet 124:1475–1486

    Article  CAS  PubMed  Google Scholar 

  • Hiebert C, Thomas J, McCallum B, Humphreys DG, DePauw R, Hayden M, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Huerta-Espino J, Singh R, Germán S, McCallum B, Park R, Chen W, Bhardwaj S, Goyeau H (2011) Global status of wheat leaf rust caused by Puccinia triticina. Euphytica 179:143–160

    Article  Google Scholar 

  • Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C (2005) Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytol 167:113–127

    Article  CAS  PubMed  Google Scholar 

  • Knott EA, Mundt CC (1991) Latent period and infection efficiency of Puccinia recondita f.sp. tritici populations isolated from different wheat cultivars. Phytopathology 81:435–439

    Article  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lagudah E, Krattinger S, Herrera-Foessel S, Singh R, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lannou C (2012) Variation and selection of quantitative traits in plant pathogens. Annu Rev Phytopathol 50:319–338

    Article  CAS  PubMed  Google Scholar 

  • Lannou C, Soubeyrand S (2013) Measure of life-cycle traits of a biotrophic pathogen. In: Stevenson KL, Jeger MJ (eds) Exercises in plant disease epidemiology, 2nd edn. APS Press, St. Paul, USA

  • Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V, Rousset M (2012) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611

    Article  PubMed  Google Scholar 

  • Lee TS, Shaner G (1985) Oligogenic inheritance of length of latent peirod in six slow leaf-rusting wheat cultivars. Phytopathology 75:636–643

    Article  Google Scholar 

  • Lehman JS, Shaner G (1997) Selection of populations of Puccinia recondita f. sp. tritici for shortened latent period on a partially resistant wheat cultivar. Phytopathology 87:170–176

    Article  CAS  PubMed  Google Scholar 

  • Lehman JS, Shaner G (2007) Heritability of latent period estimated from wild-type and selected populations of Puccinia triticina. Phytopathology 97:1022–1029

    Article  PubMed  Google Scholar 

  • Lehman JS, Hanson KA, Shaner G (2005) Relationship among genes conferring partial resistance to leaf rust (Puccinia triticina) in wheat lines CI 13227 and L-574-1. Phytopathology 95:198–205

    Article  PubMed  Google Scholar 

  • Lillemo M, Bjørnstad A, Skinnes H (2012) Molecular mapping of partial resistance to powdery mildew in winter wheat cultivar Folke. Euphytica 185:47–59

    Article  CAS  Google Scholar 

  • Mallard S, Gaudet D, Aldeia A, Abelard C, Besnard AL, Sourdille P, Dedryver F (2005) Genetic analysis of durable resistance to yellow rust in bread wheat. Theor Appl Genet 110:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Mallard S, Negre S, Pouya S, Gaudet D, Lu ZX, Dedryver F (2008) Adult plant resistance-related gene expression in “Camp Remy” wheat inoculated with Puccinia striiformis. Mol Plant Pathol 9:213–225

    Article  CAS  PubMed  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    Article  PubMed  Google Scholar 

  • Marone D, Del Olmo AI, Laido G, Sillero JC, Emeran AA, Russo MA, Ferragonio P, Giovanniello V, Mazzucotelli E, De Leonardis AM, De Vita P, Blanco A, Cattivelli L, Rubiales D, Mastrangelo AM (2009) Genetic analysis of durable resistance against leaf rust in durum wheat. Mol Breed 24:25–39

    Article  CAS  Google Scholar 

  • Mehta YR, Zadoks JC (1970) Uredospore production and sporulation period of Puccinia recondita f. sp. triticina on primary leaves of wheat. Neth J Plant Pathol 76:267–276

    Article  Google Scholar 

  • Mundt C, Cowger C, Garrett K (2002) Relevance of integrated disease management to resistance durability. Euphytica 124:245–252

    Article  CAS  Google Scholar 

  • Neu C, Stein N, Keller B (2002) Genetic mapping of the Lr20-Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome 45:737–744

    Article  CAS  PubMed  Google Scholar 

  • Niks RE, Marcel TC (2009) Nonhost and basal resistance: how to explain specificity? New Phytol 182:817–828

    Article  PubMed  Google Scholar 

  • Pariaud B, Ravigné V, Halkett F, Goyeau H, Carlier J, Lannou C (2009a) Aggressiveness and its role in the adaptation of plant pathogens. Plant Pathol 58:409–424

    Article  Google Scholar 

  • Pariaud B, Robert C, Goyeau H, Lannou C (2009b) Aggressiveness components and adaptation to a host cultivar in wheat leaf rust. Phytopathology 99:869–878

    Article  PubMed  Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance; a new view including horizontal and vertical resistance in plants. Euphytica 26:5–21

    Article  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stem of cereals. Can J Res 26c:496–500

    Article  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed Central  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    Article  CAS  PubMed  Google Scholar 

  • Shaner G, Ohm HW, Finney RE (1978) Reponse of susceptible and slow leaf-rusting wheats to infection by puccinia recondita. Phytopathology 68:471–475

    Article  Google Scholar 

  • Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98:886–893

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 88:890–894

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape J, Perretant M, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Stuthman DD, Leonard KJ, Miller-Garvin J, Donald LS (2007) Breeding crops for durable resistance to disease. In: Sparks D (ed) Advances in agronomy, vol 95. Academic Press, London, pp 319–367

    Google Scholar 

  • Tabib Ghaffary S, Robert O, Laurent V, Lonnet P, Margalé E, Lee TJ, Visser RF, Kema GJ (2011) Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor Appl Genet 123:741–754

    Article  PubMed Central  Google Scholar 

  • Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race–specific interactions. New Phytol 162:197–209

    Article  CAS  Google Scholar 

  • Tanguy A-M, Coriton O, Abélard P, Dedryver F, Jahier J (2005) Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome 48:541–546

    Article  CAS  PubMed  Google Scholar 

  • van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Curr Opin Plant Biol 13:193–205

    Article  PubMed  Google Scholar 

  • Van AL, Caffier V, Lasserre-Zuber P, Chauveau A, Brunel D, Le Cam B, Durel C-E (2013) Differential selection pressures exerted by host resistance quantitative trait loci on a pathogen population: a case study in an apple × Venturia inaequalis pathosystem. New Phytol 197:899–908

    Article  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL cartographer 2.5. North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Xu XY, Bai GH, Carver BF, Shaner GE, Hunger RM (2005) Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor Appl Genet 110:244–251

    Article  PubMed  Google Scholar 

  • Young ND (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The present research was financed by the GNIS (Groupement National Interprofessionnel des Semences), project FSOV 2008–2011. The PhD grant CIFRE of G. Azzimonti was funded by Florimond Desprez, and by the French Ministry of Research and Technology. The invaluable collaboration of breeders from Club5 and CETAC is gratefully acknowledged. Nicolas Lécutier assisted the greenhouse experiments. Lucette Duveau and Camille Bienvenu gave technical help in the greenhouse experiments. We also thank Charles-Eric Durel, Didier Tharreau and Sybil Herrera-Foessel for the discussions concerning the experimental setup and the QTL analysis process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Azzimonti or H. Goyeau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2014_57_MOESM1_ESM.pdf

Azzimonti ESM1: Assembled linkage map for the Apache x Balance population. Genetic positions (in centimorgans) of the markers are indicated on the left side of the chromosome bars. (PDF 38 kb)

11032_2014_57_MOESM2_ESM.xls

Azzimonti ESM2: Quantitative trait loci of resistance to leaf rust in the Apache x Balance population, identified by the two steps procedure (see QTL analysis subsection of the results section). The characteristics of the identified 111 QTLs are shown, as well as their classification on grouped QTLs. (XLS 48 kb)

Supplementary material 3 (PDF 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzimonti, G., Marcel, T.C., Robert, O. et al. Diversity, specificity and impacts on field epidemics of QTLs involved in components of quantitative resistance in the wheat leaf rust pathosystem. Mol Breeding 34, 549–567 (2014). https://doi.org/10.1007/s11032-014-0057-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0057-8

Keywords

Navigation