Skip to main content
Log in

Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The genetic basis of agronomic traits determining adaptation to specific production conditions is a key factor for the improvement of crops, including malting barley (Hordeum vulgare L.). The aim of this study was to determine the genome-wide genetic components associated with agronomic phenotypes of local and global significance in a population of 76 barley genotypes that have been introduced into Uruguay in different chronological periods. The phenotypic database was obtained from five field experiments, planted in 2 years and in two locations, where a total of 13 agronomic traits were determined. The population was genotyped with 1,033 single nucleotide polymorphisms. We found a total of 41 quantitative trait loci (QTL) in a combined analysis using all datasets and 79 QTL if we considered all the trait/experiment combinations analyzed. The highest concentration of QTL was detected on chromosomes 2H and 4H. Most QTL were detected for grain plumpness and weight. Two linkage disequilibrium (LD) blocks associated with a large number of traits were detected on 2HS. The largest LD block was composed of three haplotypes, possibly derived from three ancestors of different geographical origin. We also detected three genomic regions in different chromosomes (2H, 5H and 7H) in LD between them, associated with agronomic traits. This study provides a contribution to the understanding of the genetics of barley adaptation in the southern cone of South America. Our results showed that elite varieties have favorable alleles at different QTL, indicating that gains can be made through plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeledo GL, Calderini DF, Slafer GA (2002) Physiological changes associated with genetic improvement of grain yield. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science, recent advances from molecular biology to agronomy of yield and quality. Food Product Press, New York, pp 361–385

    Google Scholar 

  • Abeledo GL, Calderini DF, Slafer GA (2003) Genetic improvement of barley yield potential and its physiological determinants in Argentina (1944–1998). Euphytica 130:325–334

    Article  CAS  Google Scholar 

  • Andersen JR, Schrag T, Melchinger AE, Zein I, Lubberstedt T (2005) Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.). Theor Appl Genet 111:206–217

    Article  PubMed  CAS  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M (2005) Genome-wide association mapping in arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  CAS  Google Scholar 

  • Arias G, Reiner L, Penger A, Mangstil A (1983) Directory of barley cultivars and lines. Eugen, Stuttgart, p 391

    Google Scholar 

  • Barret JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  Google Scholar 

  • Baum BR, Bailey LG, Thompson BK (1985) Barley register. Agric Canada Publ 1783B. Ottawa, Canada

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:149–155

    Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecky J, Kearsey M (1996) Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L.) cross. Heredity 77:64–73

    Article  CAS  Google Scholar 

  • Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping controlling yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3:29–38

    Article  CAS  Google Scholar 

  • Bingham IJ, Blake J, Foulkes MJ, Spink J (2007) Is barley yield in UK sink limited? I. Post-anthesis radiation interception, radiation-use efficiency and source-sink balance. Field Crop Res 101:198–211

    Article  Google Scholar 

  • Boer M, Wright D, Feng L, Podlich D, Luo L, Cooper M, Van Eeuwijk F (2007) A mixed model QTL analysis for multiple environment trial data using environmental covariables for QTLxE with an example in maize. Genetics 177:1801–1813

    Article  PubMed  Google Scholar 

  • Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulation in wheat, maize and soybean: a quantitative reappraisal. Field Crops Res 86:131–146

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinf Appl Note 23:2633–2635

    Article  CAS  Google Scholar 

  • Bradbury P, Parker T, Hamblin MT, Jannink J-L (2011) Assesment of power and false discovery rate in genome-wide association studies using the Barley CAP germplasm. Crop Sci 51:52–59

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Caldwell KS, Russell J, Langridge P, Powell W (2006) Extreme population-dependent linkage disequilibrium detected in an inbreeding plant species, Hordeum vulgare. Genetics 172:557–567

    Article  PubMed  CAS  Google Scholar 

  • Castro A, Ernst O, Hoffman E, Bentancur O (1997) Barley germplasm characterization using agronomic and quality traits. Agrociencia 1:80–87

    Google Scholar 

  • Castro A, Hayes PM, Viega L, Vales I (2008) Transgressive segregation for phenological traits in barley explained by two major QTL alleles with additivity. Plant Breed 127:561–568

    Article  Google Scholar 

  • Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Prasanna RB, Bhat PR et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  CAS  Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. Genetics 9:9–16

    Google Scholar 

  • Comadran J, Russell JR, van Eeuwijk FA et al (2008) Mapping adaptation of barley to droughted environment. Euphytica 161:35–45

    Article  Google Scholar 

  • Comadran J, Thomas WTB, van Eeuwijk FA et al (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  PubMed  CAS  Google Scholar 

  • Comadran J, Russell JR, Booth A et al (2011) Mixed model association scan of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet 122:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Condón F (2006) Genetic gain, diversity and marker-trait association in Minnesota barley germplasm. Ph.D dissertation, University of Minnesota St. Paul

  • Coventry SJ, Collins HM, Barr AR, Jefferies SP, Chalmers KJ, Logue SJ, Landridge P (2003) Use of putative QTLs and structural genes in marker assisted selection for diastatic power in malting barley (Hordeum vulgare L.). Aust J Agric Res 54:1241–1250

    Article  CAS  Google Scholar 

  • Cuesta-Marcos A, Casas AM, Hayes PM, Garcia MP, Lasa JM, Ciudad F, Codesal P, Molina-Cano JL, Igartua E (2009) Yield QTL affected by heading date in Mediterraneum grown barley. Plant Breed 128:46–53

    Article  CAS  Google Scholar 

  • Cuesta-Marcos A, Szűcs P, Close TJ, Filichkin T, Muehlbauer GJ, Smith KP, Hayes PM (2010) Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics 11:707

    Article  PubMed  CAS  Google Scholar 

  • de la Peña RC, Smith KP, Capettini F, Muehlbauer GJ, Gallo-Meagher M, Dill-Mackay R, Somers DA, Rasmusson DC (1999) Quantitative trait loci associated with resistance to Fusarium head blight and kernel discoloration in barley. Theor Appl Genet 99:561–569

    Article  PubMed  Google Scholar 

  • Dreccer F, Grashoff C, Rabbinge R (1997) Souce-sink ratio in barley (Hordeum vulgare L.) during grain filling: effects on senescence and grain protein concentration. Field Crop Res 49:269–277

    Article  Google Scholar 

  • Ehrenreich IM, Stafford PA, Purugganan MD (2007) The genetic architecture of shoot branching in Arabidopsis thaliana: a comparative assessment of candidate gene associations vs. quantitative trait locus mapping. Genetics 176:1223–1236

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics Soc Am 164:1567–1587

    CAS  Google Scholar 

  • Fan JB, Oliphant A, Shen R et al (2003) Highly parallel SNP genotyping. Cold Spring Harb Symp Quant Biol 68:69–78

    Article  PubMed  CAS  Google Scholar 

  • Fan JB, Gunderson KL, Bibicoba M, Yeakley JM, Chen J, Wickman-Garcia E, Lebruska LL, Laurent M, Shen R, Barker E (2006) Illumina universal bead arrays. Methods Enzymol 410:57–73

    Article  PubMed  CAS  Google Scholar 

  • Federer WT (1961) Augmented designs with one-way elimination of heterogeneity. Biometrics 17:447–473

    Article  Google Scholar 

  • Fitzsimmons RW, Wrigley CW (1984) Australian barleys, 2nd edn. CSIRO, Melbourne

    Google Scholar 

  • Flint-Garcia SA (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Ford-Lloyd BV, Newbury HJ, Jackson MT, Virk PS (2001) Genetic basis for co-adaptative gene complexes in rice (Oryza sativa L.) landraces. Heredity 87:530–536

    Article  PubMed  CAS  Google Scholar 

  • Francia E, Tondelli A, Rizza F, Badeck FW, Nicossia OLD, Akkar T, Grando S, Al-Yassin A, Benbelkacem A, Thomas WTB, van Eeuwijk F, Romagosa I, Stanca AM, Pecchioni N (2011) Determinants of barley grain yield in a wide range of mediterranean environments. Field Crop Res 120:169–178

    Article  Google Scholar 

  • Franckowiak JD, Konishi T (2002) Early maturity 6, Eam6. Barley Genet Newsl 32:86–87

    Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Gallagher JN, Biscoe PJ, Scott RK (1975) Barley and its environment. V. Stability of grain weight. J Appl Ecol 12:319–336

    Article  Google Scholar 

  • Gonzalez-Martinez SC, Ersoz E, Brown GR, Wheeler NC, Neale DB (2006) DNA sequence variation and selection of Tag singlenucleotide polymorphisms at candidate genes for drought-stress response in Pinus taeda L. Genetics 172:1915–1926

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in high plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Cuesta-Marcos A, Castro AJ, von Zitzewitz J, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome 4:256–272

    Article  Google Scholar 

  • Hamblin MT, Close TJ, Bhat PR, Chao S, Kling JG, Abraham KJ, Blake T, Brooks WS, Cooper B, Griffey CA, Hayes PM, Hole DJ, Horsley RD, Obert DE, Smith KP, Ullrich SE, Muehlbauer GJ, Jannink J-L (2010) Population structure and linkage disequilibrium in U.S. barley germplasm: implications for association mapping. Crop Sci 50:556–566

    Article  CAS  Google Scholar 

  • Han F, Ullrich SE, Chirat S, Menteur S, Jestin L, Sarrafi A, Hayes PM, Jones BL, Blacke TK, Wesenberg DM, Kleinhofs A, Kilian A (1995) Mapping of β glucan content and β glucanase activity loci in barley grain and malt. Theor Appl Genet 91:921–927

    Article  CAS  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus and environmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  • Kemanian AR, Stöckle CO, Huggins DR, Viega LM (2007) A simple method to estimate harvest index in grain crops. Field Crops Res 103:208–216

    Article  Google Scholar 

  • Kjaer B, Jensen J (1996) Quantitative trait loci for grain yield and yield components in a cross between a six-rowed and two-rowed barley. Euphytica 90:39–48

    Google Scholar 

  • Kleinhofs A, Graner A (2001) An integrated of the barley genome. In: Philips RL, Vasil IK (eds) DNA-based markers in plants, 2nd edn. Kluwer, Dordrecht, pp 187–199

    Chapter  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg MMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Martinez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    Article  CAS  Google Scholar 

  • Larson SR, Habernicht DK, Blake TK, Adamson M (1997) Backcross gain for six-rowed grain and malt qualities with introgression of a feed barley yield QTL. J Am Soc Brewing Chem 55:52–57

    CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trail loci controlling flowering time in a winter × spring barley (Hordeum vulgare) cross. Genome 38:575–585

    Article  PubMed  CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTL for yield components, agronomic traits, and disease resistance in a advanced backcross population of spring barley. Genome 49:454–466

    Article  PubMed  CAS  Google Scholar 

  • Long NR, Jefferies SP, Warner P, Karakousis A, Kretschmer JM, Hunt C, Lim P, Eckermann J, Barr AR (2003) Mapping and QTL analysis of the barley population Mundah × Keel. Aust J Agric Res 54:1163–1171

    Article  CAS  Google Scholar 

  • Lorenz AJ, Hamblin MT, Jannink JL (2010) Performance of single nucleotide polymorphism versus haplotypes for genome-wide association analysis in barley. PLoS ONE 5(11):e14079. doi:10.1371/journal.pone.00114079

    Article  PubMed  CAS  Google Scholar 

  • Loss SP, Siddique KHM (1994) Morphological and Physiological traits associated with wheat yield increases in mediterranean environments. Adv Agron 52:229–276

    Article  CAS  Google Scholar 

  • Luizzi D, Castro A (1992) Variabilidad genética: su contribución al desarrollo del cultivo de cebada en el Uruguay. In: Resúmenes de la IIª Reunión Nacional de investigación en cebada cervecera. La Estanzuela, mayo de 1991. INIA, Montevideo, Uruguay

  • Malecot A (1949) Les mathématiques de l’heredite. Masson & Cie, Paris

    Google Scholar 

  • Malosetti M, Ribaut J-M, Vargas M, Crossa J, Boer M, van Eeuwijk F (2007) Multi-trait multi-environment QTL modelling for drought stress adaptation in maize. In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research, gene plant crop relations. Springer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Article  PubMed  CAS  Google Scholar 

  • Manly BFJ (1988) The comparison and scaling of student assessment marks in several subjects. Appl Stat 37:385–395

    Article  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossangel BG, Sato K, Ullrich E, Wesenberg DM (2000) QTL analysis of malting quality on barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101:173–184

    Article  CAS  Google Scholar 

  • Marquez-Cedillo LA, Hayes PM, Kleinhofs A, Legge WG, Rossangel BG, Sato K, Ullrich SE, Wesenberg DM (2001) QTL analysis of agronomic traits in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 103:625–637

    Article  CAS  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muelhbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RG, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in north american two-row barley cross. Crop Sci 37:544–554

    Article  CAS  Google Scholar 

  • Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk FA (2008) Multi-environment QTL mixed models for drought stress adaptation in wheat. Theor Appl Genet 117:1077–1091

    Article  PubMed  Google Scholar 

  • Miralles DJ, Slafer GA (1999) Wheat development. In: Satorre EH, Slafer GA (eds) Wheat: ecology and physiology of yield determination. Food Product Press, New York, pp 13–43

    Google Scholar 

  • Muñoz P, Voltas J, Araus JL, Igartua E, Romagosa I (1998) Changes over time in the adaptation of barley releases in northeastern Spain. Plant Breed 117:531–535

    Article  Google Scholar 

  • Muñoz-Amatraín M, Moscou MJ, Bhat PR et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249

    Article  CAS  Google Scholar 

  • Olliphant A, Barker DL, Stuelpangel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throuhput genotyping. Biotechnol Suppl 5:6–58

    Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  PubMed  CAS  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  PubMed  CAS  Google Scholar 

  • Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92

    Article  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Powell W, Thomas WTB, Baird E, Lawrence P, Booth A, Harrower B, McNicol JW, Waugh R (1997) Analysis of quantitative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:48–59

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pswarayi A, van Eeuwijk FA, Ceccarelli S et al (2008) Changes in alleles frequencies in landraces, old and modern barley cultivars of marker loci close to QTL for grain yield under high and low input conditions. Euphytica 163:435–447

    Article  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russel J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM, Hedley PE, Liu H, Morris J, Close TJ, Marshall DF, Waugh R (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  PubMed  CAS  Google Scholar 

  • Roy JK, Smith KP, Muelbahuer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  Google Scholar 

  • Salvi S (2007) Conserved non-coding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  PubMed  CAS  Google Scholar 

  • Sameri M, Pourkheirandish M, Chen G, Tonooka T, Komatsuda T (2011) Detection of photoperiod responsive and non-responsive flowering time QTL in barley. Breed Sci 61:183–188

    Article  Google Scholar 

  • SAS Institute (2004) Statistical analysis system online documentation. SAS, Cary

    Google Scholar 

  • Skot L, Humphreys MO, Armstead I, Heywood S, Skot KP, Sanderson R, Thomas ID, Chorlton KH, Hamilton NRS (2005) An association mapping approach to identify flowering time genes in natural populations of Lolium perenne (L.). Mol Breed 15:233–245

    Article  CAS  Google Scholar 

  • Skot L, Humphreys J, Humphreys MO, Thorogood D, Gallagher J, Sanderson R, Armstead IP, Thomas ID (2007) Association of candidate genes with flowering time and water-soluble carbohydrate content in Lolium perenne (L.). Genetics 177:535–547

    Article  PubMed  CAS  Google Scholar 

  • Slafer GA, Savin R (1994) Source-sink relationship and grain mass at different positions within the spike in wheat. Field Crops Res 37:39–49

    Article  Google Scholar 

  • Stich B, Piepho HP, Schulz B, Melchinger AE (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954

    Article  PubMed  Google Scholar 

  • Stracke S, Haseneyer G, Veyrieras JB, Geiger HH, Sauer S, Graner A, Piepho HP (2009) Association mapping reveals gene action and interactions in the determination of flowering time in barley. Theor Appl Genet 118:259–273

    Article  PubMed  CAS  Google Scholar 

  • Szalma SJ, Buckler ES, Snook ME, McMullen D (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  PubMed  CAS  Google Scholar 

  • Szücs P, Blake VC, Bhat PR, Chao S, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2:134–140

    Article  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR (1995) Detection of quantitative trail loci agronomic, yield, grain, and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    Article  CAS  Google Scholar 

  • Tinker NA, Mather DE, Rossangel BG et al (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Tracy WF, Whitt SR, Buckler ES (2006) Recurrent mutation and genome evolution: example of sugary1 and the origin of sweet maize. Crop Sci 46:S49–S54

    Article  Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • van Eeuwijk FA, Bink MC, Chenu K, Chapman SC (2010) Detection and use of QTL for complex traits in multiple environments. Plant Biol 13:1–13

    Google Scholar 

  • Volis S, Verhoeven KJF, Mendlinger S, Ward D (2004) Phenotypic selection and regulation of reproduction in different environments in wild barley. J Evol Biol 17:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • von Zitzewitz J, Cuesta-Marcos A, Condon F (2011) The genetics of winterhardiness in barley: perspectives from genome-wide association mapping. Plant Genome 4:76–91

    Article  Google Scholar 

  • Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbauer GJ (2012a) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124:111–124

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Jiang N, Jia T, Leach L, Cockram J, Waugh R, Ramsay L, Thomas B, Luo Z (2012b) Genome-wide association mapping of agronomic and morphologic traits in highly structured population of barley cultivars. Theor Appl Genet 124:233–246

    Article  PubMed  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • Wong CK, Bernardo R (2008) Genome-wide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116:815–824

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Stam P, Dourleijn CJ, Kropff MJ (1999) AFLP mapping of quantitative trait loci for yield-determining physiological characters in spring barley. Theor Appl Genet 99:244–253

    Article  CAS  Google Scholar 

  • Yin X, Chasalow SD, Stam P, Kropff MJ, Dourleijn CJ, Bos I, Bindraban PS (2002) Use of component analysis in QTL mapping of complex crop traits: a case study on yield in barley. Plant Breed 121:314–319

    Article  Google Scholar 

  • Yu J, Pressoir G, Briggs WH (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet 119:43–52

    Article  PubMed  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Sergio Pieroni and Alvaro Medina for their help in the Ombúes de Lavalle experiments. They also want to thank Dr. María Muñoz-Amatraín for her help with the location of the SNPs and two anonymous reviewers for their comments on the manuscript. The authors also wish to thank Tanya Filichkin and Phinrayat Kongprakhon for their help in the lab work. This research was funded by competitive grants awarded by the Instituto Nacional de Investigación Agropecuaria, Uruguay (FPTA 227) and the Fondo Regional de Tecnología Agropecuaria (FONTAGRO, www.fontagro.org) (Project FTG-05617-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel J. Castro.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locatelli, A., Cuesta-Marcos, A., Gutiérrez, L. et al. Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay. Mol Breeding 31, 631–654 (2013). https://doi.org/10.1007/s11032-012-9820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9820-x

Keywords

Navigation