Skip to main content
Log in

Multi-trait association mapping in sugar beet (Beta vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Association mapping promises to overcome the limitations of linkage mapping methods. The main objective of this study was to examine the applicability of multivariate association mapping with an empirical data set of sugar beet. A total of 111 diploid sugar beet inbreds was selected from the seed parent heterotic pool to represent a broad diversity with respect to sugar content (SC). The inbreds were genotyped with 26 simple sequence repeat markers chosen according to their map positions in proximity to previously identified quantitative trait loci for SC. For SC and beet yield (BY), the genotypic variances were highly significant (P < 0.01). Based on the global test of the bivariate mixed-model approach, four markers were significantly associated with SC, BY, or both at a false discovery rate of 0.025. All four markers were significantly (P < 0.05) associated with BY but only two with SC. The identification of markers associated with SC, BY, or both indicated that association mapping can be successfully applied in a sugar beet breeding context for detection of marker-phenotype associations. Furthermore, based on our results multivariate association mapping can be recommended as a promising tool to discriminate with a high mapping resolution between pleiotropy and linkage as reasons for co-localization of marker-phenotype associations for different traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:211–215

    Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Chen L, Storey JD (2006) Relaxed significance criteria for linkage analysis. Genetics 173:2371–2381

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC, Zeng Z-B (1996) Design III with marker loci. Genetics 143:1437–1456

    PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168:1737–1748

    Article  PubMed  CAS  Google Scholar 

  • Draycott AP (2006) Sugar beet, 1st edn. Blackwell, Oxford

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, London

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml user guide release 2.0. VSN International Ltd, Hermel Hempstead

  • Hackett CA, Meyer RC, Thomas WTB (2001) Multi-trait QTL mapping in barley using multivariate regression. Genet Res Camb 77:95–106

    CAS  Google Scholar 

  • Halldén C, Hjerdin A, Rading IM, Sall T, Fridlundh B, Johannisdottir G, Tuvesson S, Akesson C, and Nilsson NO (1996) A high density RFLP linkage map of sugar beet. Genome 39:634–645

    Article  PubMed  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140:1137–1147

    PubMed  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lowe CE, Cooper JD, Brusko T, Walker NM, Smyth DJ, Bailey R, Bourget K, Plagnol V, Field S, Atkinson M, Clayton DG, Wicker LS, Todd JA (2007) Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat Genet 39:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Ribaut J-M, Vargas M, Crossa J, Boer M, van Eeuwijk F (2007) Multi-trait multi-environment QTL modelling for drought stress adaptation in maize. In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research, gene-plant crop relations. Springer, Dordrecht, pp 25–36

    Chapter  Google Scholar 

  • Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL analysis. Biometrics 54:88–99

    Article  Google Scholar 

  • Melchinger AE (1988) Means, variances, and covariances between relatives in hybrid populations with disequilibrium in the parent population. In: Weir BS, Eisen EJ, Goodman MM, Nomkoong G. (eds) Proceedings of the 2nd international conference on quantitative genetics. Sinauer Associates, Raleigh, pp 400–415

    Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and larger bias in estimates of QTL effects. Genetics 149:383–403

    PubMed  CAS  Google Scholar 

  • Milford GFJ (1976) Sugar concentration in sugar beet: varietal differences and the effects of soil type and planting density on the size of the root cells. Ann Appl Biol 83:251–257

    Article  Google Scholar 

  • Piepho H-P (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050

    PubMed  CAS  Google Scholar 

  • Rencher AC (1998) Multivariate statistical inference and applications, 1st edn. Wiley, New York

    Google Scholar 

  • SAS Institute (2004) SAS Version 9.1. SAS Institute, Cary

  • Schön CC, Utz HF, Groh S, Truberg B, Openshaw S, Melchinger AE (2004) Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits. Genetics 167:485–498

    Article  PubMed  Google Scholar 

  • Schneider K, Schäfer-Pregl R, Borchardt DC, Salamini F (2002) Mapping QTLs for sucrose content, yield and quality in a sugar beet population fingerprinted by EST-related markers. Theor Appl Genet 104:1107–1113

    Article  PubMed  CAS  Google Scholar 

  • Schumacher K, Schondelmaier J, Barzen E, Steinrücken G, Borchardt D, Weber WE, Jung C, Salamini F (1997) Combining different linkage maps in sugar beet (Beta vulgaris L.) to make one map. Plant Breed 116:23–38

    Article  Google Scholar 

  • Stich B, Melchinger AE, Heckenberger M, Möhring J, Schechert A, Piepho H-P (2008a) Joint linkage and association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet (in review)

  • Stich B, Melchinger AE, Frisch M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    Article  PubMed  Google Scholar 

  • Stich B, Möhring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008b) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Szyda J, Grindflek E, Liu Z, Lien S (2003) Multivariate mixed inheritance models for QTL detection on porcine chromosome 6. Genet Res Camb 81:65–73

    CAS  Google Scholar 

  • Tamada T, Baba T (1973) Beet necrotic yellow vein virus from rhizomania-affected sugar beet in Japan. Ann Phytopathol Soc Jpn 39:325–332

    Google Scholar 

  • Weber WE, Borchardt DC, Koch G (1999) Combined linkage maps and QTLs in sugar beet (Beta vulgaris L.) from different populations. Plant Breed 118:193–204

    Article  CAS  Google Scholar 

  • Weber WE, Borchardt DC, Koch G (2000) Marker analysis for quantitative traits in sugar beet. Plant Breed 119:97–106

    Article  CAS  Google Scholar 

  • Weller JI, Wiggans GR, Van Raden PM, Ron M (1996) Application of a canonical transformation to detection of quantitative trait loci with the aid of genetic markers in a multi-traits experiment. Theor Appl Genet 92:998–1002

    Article  Google Scholar 

  • Wilson LM, Whitt SR, Ibáñez AM, Rocheford TR, Goodman MM, Buckler ES (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16:2719–2733

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Breeding and Informatics (BRAIN) project of the Genome Analysis of the Plant Biological System (GABI) initiative (http://www.gabi.de). The authors appreciate the editorial work of Dr. J. Muminović, whose suggestions considerably improved the style of the manuscript. The authors thank two anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albrecht E. Melchinger.

Additional information

Communicated by H. C. Becker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 173 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stich, B., Piepho, HP., Schulz, B. et al. Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117, 947–954 (2008). https://doi.org/10.1007/s00122-008-0834-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-008-0834-z

Keywords

Navigation