Skip to main content
Log in

Potential for detection of marker–trait associations in durum wheat using unbalanced, historical phenotypic datasets

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Identification of marker–trait associations in germplasm relevant to a breeding program can be an effective way to identify quantitative trait loci (QTL) useful for selection and is critical to the success of genome-wide selection strategies. This approach is most cost-effective if phenotypic data routinely collected by breeding programs is used, necessitating only addition of genotypic data. The objective of this work was to evaluate such an approach using unbalanced phenotypic data from durum wheat (Triticum turgidum L. var. durum) registration trials genotyped with diversity arrays technology (DArT) markers. Plant height, grain cadmium concentration and yellow colour loss during pasta manufacture were chosen as example traits because all are influenced by major genes associated with known QTL. A further evaluation was performed on semolina yellow pigment concentration, a more complexly-inherited trait, but with numerous QTL identified. In total, 870 informative DArT markers were used to detect marker–trait associations. The genome coverage of markers was uneven, with low coverage of chromosomes 4B and 5A. The DArT coverage of chromosome 4B was too sparse to identify markers strongly associated with the semidwarf height locus Rht-B1 and the lipoxygenase locus Lpx-B1, both known to reside on 4B. The 20 DArT markers associated with pigment concentration localized to chromosomes 1B, 2A, 5B, 6A, 7A and 7B, linked to the trait in other studies. One DArT clone showed sequence identity to a single wheat expressed sequence tag that maps to the same deletion bin as Psy1-A1, a gene previously associated with yellow pigment concentration in durum wheat. Three markers were associated with grain cadmium and explained similar proportions of the phenotypic variance as the Xusw14 marker known to be physically linked to Cdu-B1, a major locus on 5B regulating cadmium accumulation. The sequences of these three DArT markers were 98 % identical, and were used to identify a single gene in rice that is physically linked to other rice genes that co-localize with Cdu-B1 in durum wheat. The results suggest that this historical phenotypic dataset is useful for QTL discovery and would potentially be a ‘training population’ for genomic selection when a high-density, low-cost marker platform becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high throughput profiling of hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9(9):1086–1099. doi:10.1111/j.1467-7652.2011.00628.x

    Article  PubMed  CAS  Google Scholar 

  • Arbelbide M, Bernardo R (2006) Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet 112:885–890

    Article  PubMed  CAS  Google Scholar 

  • Arbelbide M, Yu J, Bernardo R (2006) Power of mixed-model QTL mapping from phenotypic, pedigree and marker data in self-pollinated crops. Theor Appl Genet 112:876–884

    Article  PubMed  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Börner A, Röder M, Korzun V (1997) Comparative molecular mapping of GA insensitive Rht loci on chromosomes 4B and 4D of common wheat (Triticum aestivum L.). Theor Appl Genet 95:1133–1137

    Article  Google Scholar 

  • Borrelli GM, Troccoli A, Di Fonzo N, Fares C (1999) Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem 76:335–340

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Camus-Kulandaivelu L, Veyrieras J-B, Gouesnard B, Charcosset A, Manicacci D (2007) Evaluating the reliability of structure outputs in case of relatedness between individuals. Crop Sci 47:887–892

    Article  Google Scholar 

  • Carrera A, Echeniqu V, Zhang W, Helguera M, Manthey F, Schrager A, Picca A, Cervigni G, Dubcovsky J (2007) A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat, Triticum turgidum ssp. durum. J Cereal Sci 45:67–77

    Article  CAS  Google Scholar 

  • Cervigni G, Zhang W, Picca A, Carrera A, Helguera M, Manthey F, Miranda R, Dubcovsky J, Echenique V (2005) QTL mapping for LOX activity and quality traits in durum wheat. In: Proceedings of the 7th international wheat conference. SAGPyA/INTA, Mar del Plata, Argentina 27 November–2 December

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert L, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Clarke FR, Clarke JM, McCaig TN, Knox RE, DePauw RM (2006) Inheritance of yellow pigment in concentration in four durum wheat crosses. Can J Plant Sci 86:133–141

    Article  Google Scholar 

  • Clarke JM, Clarke FR, Pozniak CJ (2010) Forty-six years of genetic improvement in Canadian durum wheat cultivars. Can J Plant Sci 90:791–809

    Article  Google Scholar 

  • Comadran J, Russell JR, Booth A, Pswarayi A, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, van Eeuwijk FA, Thomas WTB, Romagosa I (2011) Mixed model association scans of multi-environmental trial data reveal major loci controlling yield and yield related traits in Hordeum vulgare in Mediterranean environments. Theor Appl Genet 122:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111:1409–1419

    Article  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122(8):1517–1536. doi:10.1007/s00122-011-1551-6

    Article  PubMed  Google Scholar 

  • De Simone V, Menzo V, De Leonardis A-M, Bianca D, Ficco M, Trono D, Cattivelli L, De Vita P (2010) Different mechanisms control lipoxygenase activity in durum wheat kernels. J Cereal Sci 52:121–128

    Article  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke G, Richards A (2002) “Perfect” markers for the Rht B1b and Rht D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Elouafi I, Nachit MM, Martin LM (2001) Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas 135:255–261

    Article  PubMed  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  PubMed  CAS  Google Scholar 

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity a-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol Breed 26:39–49

    Article  CAS  Google Scholar 

  • Francki MG, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE, McLean R (2009) Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol Genet Genomics 281:181–191

    Article  PubMed  CAS  Google Scholar 

  • Garbus I, Carrera AD, Dubcovsky J, Echenique V (2009) Physical mapping of durum wheat lipoxygenase genes. J Cereal Sci 50:67–73

    Article  CAS  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Snape J (2011) Meta-QTL analysis of the genetic control of crop height in elite European winter wheat germplasm. Mol Breed. doi:10.1007/s11032-010-9534-x

    Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Knox RE, Pozniak CJ, Clarke FR, Clarke JM, Houshmand S (2009) Chromosomal location of the cadmium uptake gene (Cdu1) in durum wheat. Genome 52:741–747

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg PMMM, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  CAS  Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, Wolfinger RD (1996) SAS® system for mixed models. SAS Institute, Cary, p 633

    Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli V, Araus Ortega JL, Ben Salem M, Bort J, Chenenaoui C, De Ambrogio E, Garcia del Moral L, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Tuberosa R (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    Article  CAS  Google Scholar 

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  PubMed  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Eric H, DeAmbrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Mares D, Mrva K (2008) Genetic variation for quality traits in synthetic wheat germplasm. Aust J Agric Res 59:406–412

    Article  CAS  Google Scholar 

  • Matsuo RR, Dexter JE (1980) Relationship between some durum wheat physical characteristics and semolina milling properties. Can J Plant Sci 60:49–53

    Article  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Newell MA, Cook D, Tinker NA, Jannink J-L (2011) Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theor Appl Genet 122:623–632

    Article  PubMed  CAS  Google Scholar 

  • Patil RM, Oak MD, Tamhankar SA, Sourdille P, Rao VS (2008) Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum). Mol Breed 21:485–496

    Article  Google Scholar 

  • Paux E, Faure S, Choulet F, Roger D, Gauthier V, Martinant J-P, Sourdille P, Balfourier F, Le Paslier M-C, Chauveau A, Cakir M, Gandon B, Feuillet C (2010) Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol J 8:196–210

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    Article  PubMed  CAS  Google Scholar 

  • Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571

    Article  Google Scholar 

  • Pozniak CJ, Knox RE, Clarke FR, Clarke JM (2007) Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat. Theor Appl Genet 114:525–537

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51:1016–1025

    Article  PubMed  CAS  Google Scholar 

  • Roy JK, Smith KP, Muehlbauer GJ, Chao S, Close TJ, Steffenson BJ (2010) Association mapping of spot blotch resistance in wild barley. Mol Breed 26:243–256

    Article  PubMed  Google Scholar 

  • Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Reimer S, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Allelic variation at Psy-A1 and association with yellow pigment in durum wheat grain. Theor Appl Genet 118:1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Sneller CH, Mather DE, Crepieux S (2009) Analytical approaches and population types for finding and utilizing QTL in complex plant populations. Crop Sci 49:363–380

    Article  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    Article  PubMed  CAS  Google Scholar 

  • Stich B, Möhring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, Andries E, van der Vossen G, Tuberosa R (2011) High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 123(4):555–569. doi:10.1007/s00122-011-1607-7

    Article  PubMed  Google Scholar 

  • Trono D, Pastore D, Di Fonzo N (1999) Carotenoid dependent inhibition of durum wheat lipoxygenase. J Cereal Sci 29:99–102

    Article  CAS  Google Scholar 

  • Wenzl P, Catizone I, Thomson B, Huttner E, Mantovani P, Maccaferri M, Corneti S, De Ambrogio E, Sanguineti MC, Tuberosa R, Kilian A (2007) A DArT platform for high-throughput profiling of durum wheat. In: Plant and animal genome XV conference, San Diego, USA, 13–17 January, 2007

  • White J, Law JR, MacKay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  PubMed  CAS  Google Scholar 

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum). Theor Appl Genet 121:1047–1058

    Article  PubMed  CAS  Google Scholar 

  • Wittenberg AH, Lee TV, Cayla C, Kilian A, Visser RG, Schouten HJ (2005) Validation of the high-throughput marker technology DArT using the model plant Arabidopsis thaliana. Mol Genet Genomics 274:30–39

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Dubcovsky J (2008) Association between allelic variation at the phytoene synthase 1 gene and yellow pigment content in the wheat grain. Theor Appl Genet 116:635–645

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Chao S, Manthey F, Chicaiza O, Brevis JC, Echenique V, Dubcovsky J (2008) QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Genet 117:1361–1377

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4. doi:10.1371/journal.pgen.0030004

    Article  PubMed  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical assistance of Crop Development Centre staff A. Tomita and K. Wiebe for DNA extraction for the DArT marker assay and for molecular analysis of Cdu-B1, Rht1-B1 and LpxB-1.1 markers. We are also grateful to R. Babonich and R. Lawrie for assistance with field trials and for the technical assistance of S. Yates of Agriculture and Agri-Food Canada, Swift Current with extraction of phenotypic and pedigree information from the International Crop Information System database. We would like to acknowledge funding provided by the Saskatchewan Ministry of Agriculture, Western Grains Research Foundation, Agriculture and Agri-Food Canada and Genome Canada. Finally, we are grateful for the helpful suggestions of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. Pozniak.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozniak, C.J., Clarke, J.M. & Clarke, F.R. Potential for detection of marker–trait associations in durum wheat using unbalanced, historical phenotypic datasets. Mol Breeding 30, 1537–1550 (2012). https://doi.org/10.1007/s11032-012-9737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9737-4

Keywords

Navigation