Skip to main content
Log in

Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Plant breeding data comprise unbalanced phenotypic data for inbreds with complex pedigrees. As traditional methods to map quantitative trait loci (QTL) cannot exploit plant breeding data, an alternative approach is QTL mapping via a mixed-model procedure. Our objective was to validate mixed-model QTL mapping for self-pollinated crops by detecting QTL for kernel hardness and dough strength from data in a bread wheat (Triticum aestivum L.) breeding program. We studied 80 parental and 373 experimental inbreds genotyped for 65 simple sequence repeat (SSR) markers and three candidate loci. The methodology involved three steps: variance component estimation, single-marker analyses, and a final multiple-marker analysis with marker effects treated as fixed effects. Two QTLs for kernel hardness were detected on chromosomes 1A (close to candidate locus GluA3) and 5D (close to candidate locus Ha). Four QTLs were detected for dough strength on chromosomes 1A, 1B, 1D, and 5B. Candidate gene GluA1, which was associated with dough strength, was the only candidate locus found significant. Results were consistent with previously reported markers and QTLs associated with kernel hardness and dough strength. Unlike previous studies that have assumed QTL effects as random, the assumption of fixed marker effects identified the favorable marker alleles to select for. We conclude that the detection of previously mapped QTL validates the usefulness of mixed-model QTL mapping in the context of a plant-breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arbelbide M, Yu J, Bernardo R (2006) Power of mixed-model QTL mapping from phenotypic, pedigree and marker data in self-pollinated crops. Theor Appl Genet (submitted)

  • Bernardo R, Romero-Severson J, Ziegle J, Hauser J, Joe L, Hook G, Doerge RW (2000) Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theor Appl Genet 100:552–556

    CAS  Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Boeuf C, Prodanovic S, Gay G, Bernard M (2003) Structural organization of the group-1 chromosomes of two bread wheat sister lines. Theor Appl Genet 106:938–946

    PubMed  CAS  Google Scholar 

  • Branlard G, Dardevet M, Saccomano R, Lagoutte, Gourdon J (2001) Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 119:59–67

    Article  CAS  Google Scholar 

  • Campbell KG, Bergman C, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J, Gendre F, Roué C, Vérel A, Sorrells ME (2001) Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41:1275–1285

    Article  CAS  Google Scholar 

  • Charmet G, Robert N, Perretant MR, Gay G, Sourdille P, Groos C, Bernard S, Bernard M (2001) Marker assisted recurrent selection for cumulating QTLs for bread-making related traits. Euphytica 119:89–93

    Article  CAS  Google Scholar 

  • Crepieux S (2004) Etude methodologique et experimentale de la detection de QTL pour des populations issues de selections genealogique. These Docteur de l’Institut Nationale Agrnonomique Paris-Grinon, France

  • Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168:1737–1749

    Article  PubMed  CAS  Google Scholar 

  • Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111:1409–1419

    Article  PubMed  Google Scholar 

  • Dilbirligi M, Erayman M, Sandhu D, Sidhu D, Gill KS (2004) Identification of wheat chromosomal regions containing expressed resistance genes. Genetics 166:461–481

    Article  PubMed  CAS  Google Scholar 

  • Emik LO, Terrill CE (1949) Systematic procedures for calculating inbreeding coefficients. J Hered 40:51–55

    CAS  PubMed  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    CAS  Google Scholar 

  • Grupe A, Germer S, Usuka J, Aud D, Belknap JK, Klein RF, Ahluwalia MK, Higuchi R, Peltz G (2001) In silico mapping of complex disease-related traits in mice. Science 292:1915–1918

    Article  PubMed  CAS  Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Ontario, Canada

    Google Scholar 

  • Kennedy BW, Quinton M, van Arendonk JAM (1992) Estimation of effects of single genes on quantitative traits. J Anim Sci 70:2000–2012

    PubMed  CAS  Google Scholar 

  • Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242

    Article  PubMed  CAS  Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    Article  PubMed  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Singh NK, Shepherd KW (1988a) Linkage mapping of genes controlling endosperm storage proteins in wheat. 1. Genes on the short arms of group 1 chromosomes. Theor Appl Genet 75:628–641

    Article  CAS  Google Scholar 

  • Singh NK, Shepherd KW (1988b) Linkage mapping of genes controlling endosperm storage proteins in wheat 2. Genes on the long arms of group 1 chromosomes. Theor Appl Genet 75:642–650

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier MF, Joudrier P, Nelson JC, Sorrells ME, Bernard M (1996) Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93:580–586

    CAS  Google Scholar 

  • Xu S, Atchley WR (1995) A random model approach to interval mapping of quantitative trait loci. Genetics 141:1189–1197

    PubMed  CAS  Google Scholar 

  • Yu J, Arbelbide M, Bernardo R (2005) Power of in silico QTL mapping from phenotypic, pedigree and marker data in a hybrid breeding program. Theor Appl Genet 110:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet G, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sebastien Crepieux for providing us the wheat data. The data were produced under ASG (Après Séquencage Génomique) program number 01 04 90 6058 of the French Ministère de l’Economie, des Finances et de l’Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bernardo.

Additional information

Communicated by H. Becker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbelbide, M., Bernardo, R. Mixed-model QTL mapping for kernel hardness and dough strength in bread wheat. Theor Appl Genet 112, 885–890 (2006). https://doi.org/10.1007/s00122-005-0190-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0190-1

Keywords

Navigation