Skip to main content

Advertisement

Log in

Landscape resistance and American marten gene flow

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Landscape heterogeneity can influence animal dispersal by causing a directional bias in dispersal rate, as certain landscape configurations might promote, impede, or prevent movement and gene flow. In forested landscapes, logging operations often contribute to heterogeneity that can reduce functional connectivity for some species. American martens (Martes americana) are one such species, as they are considered specialists of late-seral coniferous forests. We assessed marten gene flow to test the hypothesis that habitat management has maintained landscape connectivity for martens in the managed forests of Ontario, Canada. We genotyped 653 martens at 12 microsatellite loci, sampled from 29 sites across Ontario. We expected that if forest management has an effect on marten gene flow, we would see a correlation between effective resistance, estimated by circuit theory, and genetic distance, estimated by population graphs. Although we found a positive relationship between effective resistance and genetic distance (Mantel r = 0.249, P < 0.001), marten gene flow was better described by isolation by Euclidean distance (Mantel r = 0.410, P < 0.001). Our results suggest that managed forests in Ontario are well connected for marten and neither impede nor promote marten gene flow at the provincial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berg WE (1982) Reintroduction of fisher, pine marten, and river otter. In: Sanderson GC (ed) Midwest furbearer management. Proceedings of the 43rd midwest fish and wildlife conference, Wichita, Kansas, 1981

  • Bowman JC, Robitaille J-F (1997) Winter habitat use of American martens Martes americana within second-growth forest in Ontario, Canada. Wildl Biol 3:97–105

    Google Scholar 

  • Bowman J, Robitaille J-F (2005) An assessment of expert-based marten habitat models used for forest management in Ontario. For Chron 81:801–807

    Google Scholar 

  • Broquet T, Johnson CA, Petit E et al (2006a) Dispersal and genetic structure in the American marten, Martes americana. Mol Ecol 15:1689–1697

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Ray N, Petit E et al (2006b) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Article  Google Scholar 

  • Buskirk SW, Powell RA (1994) Habitat ecology of fishers and American martens. In: Buskirk SW, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables, and fishers: biology and conservation. Cornell University Press, Ithaca, pp 283–296

    Google Scholar 

  • Chapin TG, Harrison DJ, Katnik DD (1998) Influence of landscape pattern on habitat use by American marten in an industrial forest. Conserv Biol 12:1327–1337

    Article  Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010a) Scale dependent inference in landscape genetics. Landscape Ecol 25:967–979

    Article  Google Scholar 

  • Cushman SA, Landguth EL (2010b) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    Article  PubMed  Google Scholar 

  • Cushman SA, Lewis JS (2010) Movement behavior explains genetic differentiation in American black bears. Landscape Ecol 25:1613–1625

    Article  Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, Raphael MG, Ruggiero LF et al (2011) Limiting factors and landscape connectivity: the American marten in the Rocky Mountains. Landscape Ecol 26:1137–1149

    Article  Google Scholar 

  • Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251

    PubMed  CAS  Google Scholar 

  • Davis CS, Strobeck C (1998) Isolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae. Mol Ecol 7:1776–1778

    PubMed  CAS  Google Scholar 

  • de Vos A (1951) Overflow and dispersal of marten and fisher from wildlife refuges. J Wildl Manag 15:164–175

    Article  Google Scholar 

  • Driezen K, Adriaensen F, Rondinini C et al (2007) Evaluating least-cost model predictions with empirical dispersal data: a case study using radio tracking data of hedgehogs (Erinaceus europaeus). Ecol Model 209:314–322

    Article  Google Scholar 

  • Duffy AJ, Landa A, O’Connell M et al (1998) Four polymorphic microsatellites in wolverine, Gulo gulo. Anim Genet 29:63

    Article  PubMed  CAS  Google Scholar 

  • Dyer RJ (2009) GeneticStudio: a suite of programs for spatial analysis of genetic-marker data. Mol Ecol Resour 9:110–113

    Article  PubMed  Google Scholar 

  • Dyer RJ, Nason JD (2004) Population Graphs: the graph theoretic shape of genetic structure. Mol Ecol 13:1713–1727

    Article  PubMed  Google Scholar 

  • Dyer RJ, Nason JD, Garrick RC (2010) Landscape modelling of gene flow: improved power using conditional genetic distance derived from the topology of population networks. Mol Ecol 19:3746–3759

    Article  PubMed  Google Scholar 

  • Elkie PC, Hooper G, Carr AP, Rempel RS (1999) Ontario marten analyst and marten1 models: Directions for applying the forest management guidelines for the provision of marten habitat in the northwest region. Ontario Ministry of Natural Resources Northwest Science and Technology, Thunder Bay, Ontario, NWST TM-004

  • Elkie PC, Gluck M, Boos J, et al. (2009) Science and information in support of the forest management guide for landscapes: package “A” simulations, rationale, and inputs. Ontario Ministry of Natural Resources, Forest Policy Section

  • Fleming MA, Ostrander EA, Cook JA (1999) Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Mol Ecol 8:1352–1354

    Article  PubMed  CAS  Google Scholar 

  • Fuller AK, Harrison DJ (2005) Influence of partial timber harvesting on American martens in north-central Maine. J Wildl Manag 69:710–722

    Article  Google Scholar 

  • Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of graph theory to landscape genetics. Evol Appl 1:620–630

    Google Scholar 

  • Garroway CJ, Bowman J, Holloway GL et al (2011a) The genetic signature of rapid range expansion by flying squirrels in response to contemporary climate warming. Glob Change Biol 17:1760–1769

    Article  Google Scholar 

  • Garroway CJ, Bowman J, Wilson PJ (2011b) Using a genetic network to parameterize a landscape resistance surface. Mol Ecol 20:3978–3988

    Article  PubMed  Google Scholar 

  • Hagmeier EM (1956) Distribution of marten and fisher in North America. Can Field Nat 70:101–148

    Google Scholar 

  • Hargis CD, Bissonette JA (1997) Effects of forest fragmentation on populations of American marten in the intermountain west. In: Proulx G, Bryant HN, Woodard PM (eds) Martes: taxonomy, ecology, techniques, and management. Provincial Museum of Alberta, Edmonton, Alberta, pp 437–451

    Google Scholar 

  • Hargis CD, Bissonette JA, Turner DL (1999) The influence of forest fragmentation and landscape pattern on American martens. J Appl Ecol 36:157–172

    Article  Google Scholar 

  • Holloway GL, Naylor BJ, Watt WR (2004) Habitat relationships of wildlife in Ontario. Revised habitat suitability models for the Great Lakes-St. Lawrence and Boreal East forests. Ontario Ministry of Natural Resources, Science and Information Branch, Southern Science and Information and Northeast Science and Information Joint Technical Report #1

  • Johnson CA (2008) Mammalian dispersal behaviour and its fitness correlates. Dissertation, University of Guelph

  • Johnson CA, Fryxell JM, Thompson ID, Baker JA (2009) Mortality risk increases with natal dispersal distance in American martens. Proc R Soc B 276:3361–3367

    Article  PubMed  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Dufour AB, Pontier D (2008) Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 101:92–103

    Article  PubMed  CAS  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Koen EL, Garroway CJ, Wilson PJ, Bowman J (2010) The effect of map boundary on estimates of landscape resistance to animal movement. PLoS One 5(7):e11785

    Article  PubMed  Google Scholar 

  • Krohn WB, Elowe KD, Boone RB (1995) Relations among fishers, snow, and martens: development and evaluation of two hypotheses. For Chron 71:97–105

    Google Scholar 

  • Kyle CJ, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the distinctiveness of Newfoundland pine martens (Martes americana atrata). Can J Zool 81:57–66

    Article  Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    Article  PubMed  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McLaren MA, Thompson ID, Baker JA (1998) Selection of vertebrate wildlife indicators for monitoring sustainable forest management in Ontario. For Chron 74:241–248

    Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    Article  PubMed  CAS  Google Scholar 

  • McRae BH, Shah VB (2009) Circuitscape user’s guide. http://www.circuitscape.org. Accessed Jan 2011

  • McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724

    Article  PubMed  Google Scholar 

  • Moran P (1948) The interpretation of statistical maps. J R Stat Soc B 10:243–251

    Google Scholar 

  • Moran P (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    PubMed  CAS  Google Scholar 

  • Naylor B, Kaminski D, Bridge S, et al. (1999) User’s guide for OWHAM99 and OWHAMTool (Ver. 4.0). Ontario Ministry of Natural Resources, SCSS Technical Report. no. 54

  • O’Grady JJ, Brook BW, Reed DH et al (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Oksanen J, Kindt R, Legendre P et al (2009) Vegan: community ecology package. R package version 1.15-3. http://vegan.r-forge.r-project.org/. Accessed June 2009

  • Payer DC, Harrison DJ (2003) Influence of forest structure on habitat use by American marten in an industrial forest. For Ecol Manag 179:145–156

    Article  Google Scholar 

  • Perera AJ, Baldwin DJB (2001) Spatial patterns in the managed forest landscape of Ontario. In: Perera AH, Euler DL, Thompson ID (eds) Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario. Ontario Ministry of Natural Resources and UBC Press, Vancouver, British Columbia, pp 74–99

    Google Scholar 

  • Perez-Espona S, Perez-Barberia FJ, McLeod JE et al (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    Article  PubMed  CAS  Google Scholar 

  • Peterson RL, Crichton V (1949) The fur resources of Chapleau District, Ontario. Can J Res 27:68–84

    Article  Google Scholar 

  • Potvin F, Belanger L, Lowell K (2000) Marten habitat selection in a clearcut boreal landscape. Conserv Biol 14:844–857

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Accessed Jan 2011

  • Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55:1703–1705

    PubMed  CAS  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schwartz MK, Copeland JP, Anderson NJ et al (2009) Wolverine gene flow across a narrow climatic niche. Ecology 90:3222–3232

    Article  PubMed  Google Scholar 

  • Shirk AJ, Wallin DO, Cushman SA et al (2010) Inferring landscape effects on gene flow: a new model selection framework. Mol Ecol 19:3603–3619

    Article  PubMed  CAS  Google Scholar 

  • Short Bull RA, Cushman SA, Mace R et al (2011) Why replication is important in landscape genetics: American black bear in the Rocky Mountains. Mol Ecol 20:1092–1107

    Article  Google Scholar 

  • Spear SF, Balkenhol N, Fortin MJ et al (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS et al (2007) Putting the ‘landscape’ in landscape genetics. Heredity 98:128–142

    Article  PubMed  CAS  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Article  Google Scholar 

  • Ter-Mikaelian MT, Columbo SJ, Chen J (2009) Estimating natural forest fire return interval in northeastern Ontario, Canada. For Ecol Manag 258:2037–2045

    Article  Google Scholar 

  • Thompson ID (2000) Forest vegetation of Ontario: factors influencing landscape change. In: Perera AH, Euler DL, Thompson ID (eds) Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario. Ontario Ministry of Natural Resources and UBC Press, Vancouver, British Columbia, pp 30–53

    Google Scholar 

  • Thompson ID, Colgan PW (1987) Numerical responses of martens to a food shortage in northcentral Ontario. J Wildl Manag 51:824–835

    Article  Google Scholar 

  • Tully SM (2006) Habitat selection of fishers (Martes pennanti) in an untrapped refugium: Algonquin Provincial Park. Thesis, Trent University, Ontario, Canada

  • Vincent IR, Farid A, Otieno CJ (2003) Variability of thirteen microsatellite markers in American mink (Mustela vison). Can J Anim Sci 83:597–599

    Article  CAS  Google Scholar 

  • Voigt DR, Baker JA, Rempel RS, Thompson ID (2000) Forest vertebrate responses to landscape-level changes in Ontario. In: Perera AH, Euler DL, Thompson ID (eds) Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario. Ontario Ministry of Natural Resources and UBC Press, Vancouver, British Columbia, pp 198–233

    Google Scholar 

  • Walker CW, Vila C, Landa A et al (2001) Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Mol Ecol 10:53–63

    Article  PubMed  CAS  Google Scholar 

  • Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-modal inference in landscape genetics: Martes Americana in northern Idaho. Landscape Ecol 25:1601–1612

    Article  Google Scholar 

  • Watt WR, Baker JA, Hogg DM, et al. (1996) Forest management guidelines for the provision of marten habitat, version 1.0. Ontario Ministry of Natural Resources Forest Management Branch MNR#50908, Queens Printer for Ontario

  • Williams BW, Scribner KT (2010) Effects of multiple founder populations on spatial genetic structure of reintroduced American martens. Mol Ecol 19:227–240

    Article  PubMed  Google Scholar 

  • Williams BW, Gilbert JH, Zollner PA (2007) Historical perspective on the reintroduction of the fisher and American marten in Michigan and Wisconsin. General Technical Report NRS-5. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station

Download references

Acknowledgments

We thank Linda Dix-Gibson and Lynn Landriault for providing marten genetic samples, and Taryne Chong and Vanessa Meunier for lab work. Funding was provided by NSERC (Discovery grants to JB and PJW, and scholarships to ELK and CJG), a Canada Research Chair to PJW, and the Ontario Ministry of Natural Resources. We thank Aaron A. Walpole and Laura M. Thompson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin L. Koen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koen, E.L., Bowman, J., Garroway, C.J. et al. Landscape resistance and American marten gene flow. Landscape Ecol 27, 29–43 (2012). https://doi.org/10.1007/s10980-011-9675-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-011-9675-2

Keywords

Navigation