Skip to main content
Log in

Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Individual-based analyses relating landscape structure to genetic distances across complex landscapes enable rigorous evaluation of multiple alternative hypotheses linking landscape structure to gene flow. We utilize two extensions to increase the rigor of the individual-based causal modeling approach to inferring relationships between landscape patterns and gene flow processes. First, we add a univariate scaling analysis to ensure that each landscape variable is represented in the functional form that represents the optimal scale of its association with gene flow. Second, we use a two-step form of the causal modeling approach to integrate model selection with null hypothesis testing in individual-based landscape genetic analysis. This series of causal modeling indicated that gene flow in American marten in northern Idaho was primarily related to elevation, and that alternative hypotheses involving isolation by distance, geographical barriers, effects of canopy closure, roads, tree size class and an empirical habitat model were not supported. Gene flow in the Northern Idaho American marten population is therefore driven by a gradient of landscape resistance that is a function of elevation, with minimum resistance to gene flow at 1500 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Balkenhol N, Gugerli F, Cushman SA, Waits LP, Coulon A, Arntzen JW, Holderegger R, Wagner HH, Arens P, Campagne P, Dale VH, Nicieza AG, Smulders MJM, Tedesco E, Wang H, Wasserman TN (2009) Identifying future research needs in landscape genetics: where to from here? Landscape Ecol 24:455–463

    Google Scholar 

  • Bissonette JA, Harrison DJ, Hargis CD, Chapin TG (1997) The influence of spatial scale and scale-sensitive properties on habitat selection by American marten. In: Bissonette JA (ed) Wildlife and landscape ecology. Springer, New York, pp 368–385

    Google Scholar 

  • Broquet T, Ray N, Petit E, Fryxell JM, Burel F (2006) Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21:877–889

    Google Scholar 

  • Buskirk SW, Powell RA (1994) Habitat ecology of fishers and American martens. In: Buskirk SW, Harestad AS, Raphael MG, Powell RA (eds) Martens, sables, and fishers. Cornell University Press, Ithaca, pp 283–296

    Google Scholar 

  • Castellano S, Balletto E (2002) Is the partial Mantel test inadequate? Evolution 56:1871–1873

    PubMed  Google Scholar 

  • Chapin TG, Harrison DJ, Katnik DD (1998) Influence of landscape pattern on habitat use by American marten in an industrial forest. Conserv Biol 12:96–227

    Google Scholar 

  • Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coulon A, Cosson JF, Angibault JM, Cargnelutti B, Galan M, Morellet N, Petit E, Aulagnier S, Hewson AJM (2004) Landscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach. Mol Ecol 13:2841–2850

    CAS  PubMed  Google Scholar 

  • Coulon A, Guillot G, Cosson GF, Angibault JMA, Aulagnier S, Cargnelutti B, Galan M, Hewison AJM (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. Mol Ecol 15:1669–1679

    CAS  PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010a) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602

    PubMed  Google Scholar 

  • Cushman SA, Landguth EL (2010b) Scale dependent inference in landscape genetics. Landscape Ecol 25:967–979

    Google Scholar 

  • Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene-flow in complex landscapes: testing multiple models with causal modeling. Am Nat 168:486–499

    Article  PubMed  Google Scholar 

  • Cushman SA, McKelvey KS, Schwartz MK (2008) Using empirically derived source-destination models to map regional conservation corridors. Conserv Biol 23:368–376

    PubMed  Google Scholar 

  • Dupanloup I, Schneider S, Excoffier L (2001) A simulated annealing approach to define genetic structure of populations. Mol Ecol 58:2021–2036

    Google Scholar 

  • ESRI (2003) ARCGIS. Environmental Systems Research Incorporated, Redlands

    Google Scholar 

  • Evans JS, Cushman SA (2009) Gradient modeling of conifer species using random forests. Landscape Ecol 24:673–683

    Google Scholar 

  • Evett IW, Weir BS (1998) Interpreting DNA evidence. Sinauer, Sunderland

    Google Scholar 

  • Francois O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fry JA, Coan MJ, Homer CG, Meyer DK, Wickham JD (2008) Completion of the national land cover database (NLCD) 1992–2001 land cover change retrofit product. USGS OF 2008–1379

  • Funk CW, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    CAS  PubMed  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22(7):1–19

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hargis CD (1996) The influence of forest fragmentation and landscape pattern on American marten and their prey. PhD dissertation, Utah State University, Logan, Utah

  • Hargis CD, Bissonette JA, Turner DL (1999) The influence of forest fragmentation and landscape pattern on American martens. J Appl Ecol 36:157–172

    Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. Bioscience 58:199–207

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Krist FJ, Brown DG (1994) GIS modeling of paleo-indian period caribou migrations and viewsheds in northeastern lower Michigan. Photogramm Eng Remote Sensing 60:1129–1137

    Google Scholar 

  • Kyle CJ, Strobeck C (2003) Genetic homogeneity of Canadian mainland marten populations underscores the disctinctiveness of Newfoundland pine martens (Martes americana atrata). Can J Zool 81:57–66

    Google Scholar 

  • Landguth EL, Cushman SA (2010) CDPOP: an individual-based, cost-distance spatial population genetics model. Mol Ecol Resour 10:156–161

    CAS  PubMed  Google Scholar 

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (in press) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Google Scholar 

  • Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10:831–844

    PubMed  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  • Legendre P, Troussellier M (1988) Aquatic heterotrophic bacteria: modeling in the presence of spatial autocorrelation. Limnol Oceanogr 33:1055–1067

    Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561

    PubMed  Google Scholar 

  • McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. Proc Natl Acad Sci USA 104:19885–19890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michels E, Cottenie K, Neys L, DeGalas K, Coppin P, DeMeester L (2001) Geographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modeling of the effective geographical distance. Mol Ecol 10:1929–1938

    CAS  PubMed  Google Scholar 

  • Mills LS, Pilgrim K, Schwartz MK, McKelvey K (2001) Identifying lynx and other North American felids based on MtDNA analysis. Conserv Genet 1:285–289

    Google Scholar 

  • Peakall R, Smouse PE (2005) GENALEX 6: genetic analysis in EXCEL: population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish Highland red deer (Cervus elaphus). Mol Ecol 17:981–996

    PubMed  Google Scholar 

  • Phillips DM (1994) Social and spatial characteristics, and dispersal of marten in a forest preserve and industrial forest. M.S. thesis, University of Maine, Orono, USA

  • Pritchard JK, Stephens M, Peter D (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2005) Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerability by small populations. Proc R Soc B Biol Sci 272:2409–2416

    Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org

  • Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55:1703–1705

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2), population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Riddle A, Pilgrim KL, Mills LS, McKelvey KS, Ruggiero LF (2003) Identification of mustelids using mitochondrial DNA and non-invasive sampling. Conserv Genet 4:241–243

    CAS  Google Scholar 

  • Ruggiero LF, Aubrey KB, Buskirk J, Lyona ND, Zielinski WJ (1994) The scientific basis for conserving forest carnivores: American marten, fisher lynx, and wolverine in the western United States. U.S. Forest Service General Technical Report RM-254

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Google Scholar 

  • Schwartz MK, Copeland JP, Anderson NJ, Squires JR, Inman RM, McKelvey KS, Pilgrim KL, Waits LP, Cushman SA (2009) Wolverine gene flow across a narrow climatic niche. Ecology 90:3222–3232

    PubMed  Google Scholar 

  • Shirk A, Wallin DO, Cushman SA, Rice C, Warheit K (2010) Inferring landscape effects on gene flow: a new multi-scale model selection framework. Mol Ecol 19:3489–3495

    Google Scholar 

  • Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632

    Google Scholar 

  • Spear SF, Peterson CR, Matacq M, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the ‘‘landscape’’ in landscape genetics. Heredity 98:128–142

    CAS  PubMed  Google Scholar 

  • Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573

    Google Scholar 

  • Thompson CM, McGarigal K (2002) The influence of research scale on bald eagle habitat selection along the lower Hudson River, New York (USA). Landscape Ecol 17:569–586

    Google Scholar 

  • Vitalis R, Couvet D (2001) Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157:911–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker W, Craighead FL (1997) Analyzing wildlife movement corridors in Montana using GIS. In: Proceedings of the 1997 ESRI user conference

  • Wasserman TN (2008) Habitat relationships and landscape genetics of Martes americana in northern Idaho. M.S. thesis, Western Washington University, Bellingham

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was primarily supported by the U.S. Forest Service Rocky Mountain Research Station, the Idaho Department of Fish and Game, and Western Washington University, Huxley College of the Environment. We especially thank Jim Hayden of Idaho Fish and Game for his support and the RMRS Wildlife Genetics Lab in Missoula, MT. We also thank the two anonymous reviewers and Rolf Holderegger for their helpful insights and comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzeidle N. Wasserman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2075 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, T.N., Cushman, S.A., Schwartz, M.K. et al. Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecol 25, 1601–1612 (2010). https://doi.org/10.1007/s10980-010-9525-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-010-9525-7

Keywords

Navigation