Skip to main content
Log in

Genetic isolation by distance and landscape connectivity in the American marten (Martes americana)

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Empirical studies of landscape connectivity are limited by the difficulty of directly measuring animal movement. ‘Indirect’ approaches involving genetic analyses provide a complementary tool to ‘direct’ methods such as capture–recapture or radio-tracking. Here the effect of landscape on dispersal was investigated in a forest-dwelling species, the American marten (Martes americana) using the genetic model of isolation by distance (IBD). This model assumes isotropic dispersal in a homogeneous environment and is characterized by increasing genetic differentiation among individuals separated by increasing geographic distances. The effect of landscape features on this genetic pattern was used to test for a departure from spatially homogeneous dispersal. This study was conducted on two populations in homogeneous vs. heterogeneous habitat in a harvested boreal forest in Ontario (Canada). A pattern of IBD was evidenced in the homogeneous landscape whereas no such pattern was found in the near-by harvested forest. To test whether landscape structure may be accountable for this difference, we used effective distances that take into account the effect of landscape features on marten movement instead of Euclidean distances in the model of isolation by distance. Effective distances computed using least-cost modeling were better correlated to genetic distances in both landscapes, thereby showing that the interaction between landscape features and dispersal in Martes americana may be detected through individual-based analyses of spatial genetic structure. However, the simplifying assumptions of genetic models and the low proportions in genetic differentiation explained by these models may limit their utility in quantifying the effect of landscape structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Adriaensen J.P. Chardon G. Blust ParticleDe E. Swinnen S. Villalba H. Gulinck E. Matthysen (2003) ArticleTitleThe application of ‘least-cost’ modelling as a functional landscape model Landsc. Urban Plan. 64 233–247 Occurrence Handle10.1016/S0169-2046(02)00242-6

    Article  Google Scholar 

  • J.-F. Arnaud (2003) ArticleTitleMetapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity Landscape Ecol. 18 333–346 Occurrence Handle10.1023/A:1024409116214

    Article  Google Scholar 

  • J.C. Avise (2004) Molecular Markers, Natural History, and Evolution Sinauer Associates Sunderland

    Google Scholar 

  • T. Broquet (2004) Structure génétiqueconnectivité du paysage et dispersion de la martre Américaine (Martes americana) en forêt boréale exploitée University of Rennes 1 Rennes

    Google Scholar 

  • Broquet T., Johnson C.A., Petit E., Thompson I.D., Burel F. and Fryxell J.M. in press. Dispersal and genetic structure in the American marten, Martes americana. Mol. Ecol.

  • S.W. Buskirk S.C. Forrest M.G. Raphael H.J. Harlow (1989) ArticleTitleWinter resting site ecology of marten in the central rocky mountains J. Wildl. Manage. 53 191–196

    Google Scholar 

  • S.W. Buskirk R.A. Powell (1994) Habitat ecology of fishers and American martens S.W. Buskirk M.G. Raphael R.A. Powell (Eds) Martens, Sables, and Fischers. Biology and Conservation Cornell University New York 283–296

    Google Scholar 

  • V. Castric F. Bonney L. Bernatchez (2001) ArticleTitleLandscape structure and hierarchical genetic diversity in the brook charrSalvenilus fontinalis Evolution 55 1016–1028 Occurrence Handle11430638 Occurrence Handle1:STN:280:DC%2BD38%2Fhs1GjtA%3D%3D Occurrence Handle10.1554/0014-3820(2001)055[1016:LSAHGD]2.0.CO;2

    Article  PubMed  CAS  Google Scholar 

  • J.P. Chardon F. Adriaensen E. Matthysen (2003) ArticleTitleIncorporating landscape elements into a connectivity measure: a case study for the Speckled wood butterfly (Pararge aegeria L.) Landscape Ecol. 18 561–573 Occurrence Handle10.1023/A:1026062530600

    Article  Google Scholar 

  • W.S. Cleveland E. Grosse W.M. Shyu (1992) Local regression models J.M. Chambers T.J. Hastie (Eds) Statistical Models in S Chapman and Hall New York 309–376

    Google Scholar 

  • A. Coulon J.F. Cosson J.M. Angibault B. Cargnelutti M. Galan N. Morellet E. Petit S. Aulagnier A.J.M. Hewison (2004) ArticleTitleLandscape connectivity influences gene flow in a roe deer population inhabiting a fragmented landscape: an individual-based approach Mol. Ecol. 13 2841–2850 Occurrence Handle15315694 Occurrence Handle1:CAS:528:DC%2BD2cXotlemu7c%3D Occurrence Handle10.1111/j.1365-294X.2004.02253.x

    Article  PubMed  CAS  Google Scholar 

  • E. Danchin D. Heg B. Doliguez (2001) Public information and breedding habitat selection J. Clobert E. Danchin A.A. Dhondt J.D. Nichols (Eds) Dispersal Oxford University Press New York 243–258

    Google Scholar 

  • C.S. Davis C. Strobeck (1998) ArticleTitleIsolation, variability, and cross-species amplification of polymorphic microsatellite loci in the family Mustelidae Mol. Ecol. 7 1776–1778 Occurrence Handle9859206 Occurrence Handle1:CAS:528:DyaK1MXjtVOgtg%3D%3D

    PubMed  CAS  Google Scholar 

  • J.M. Davis J.A. Stamps (2004) ArticleTitleThe effect of natal experience on habitat preferences Trends Ecol. Evol. 18 411–598 Occurrence Handle10.1016/j.tree.2004.04.006

    Article  Google Scholar 

  • R.G. D’Eon S.M. Glenn I. Parfitt M.-J. Fortin (2002) ArticleTitleLandscape connectivity as a function of scale and organism vagility in a real forested landscape Conserv. Ecol. 6 10

    Google Scholar 

  • B.K. Epperson (2003) Geographical Genetics Princeton University Press Princeton

    Google Scholar 

  • D.M. Fecske J.A. Jenks (2002) ArticleTitleDispersal by male american marten, Martes americana Can. Field-Nat. 116 309–311

    Google Scholar 

  • C.B. Fenster X. Vekemans O. Hardy (2003) ArticleTitleQuantifying gene flow from spatial genetic structure data in a metapopulation of Chamaecrista fasciculata (Leguminosae) Evolution 57 995–1007 Occurrence Handle12836818 Occurrence Handle10.1554/0014-3820(2003)057[0995:QGFFSG]2.0.CO;2

    Article  PubMed  Google Scholar 

  • R.H. Gardner E.J. Gustafson (2004) ArticleTitleSimulating dispersal of reintroduced species within heterogeneous landscapes Ecol. Model. 171 339–358 Occurrence Handle10.1016/j.ecolmodel.2003.08.008

    Article  Google Scholar 

  • B.J. Goodwin (2003) ArticleTitleIs landscape connectivity a dependent or independent variable? Landscape Ecol. 18 687–699 Occurrence Handle10.1023/B:LAND.0000004184.03500.a8

    Article  Google Scholar 

  • B.J. Goodwin L. Fahrig (2002) ArticleTitleHow does landscape structure influence landscape connectivity? Oikos 99 552–570 Occurrence Handle10.1034/j.1600-0706.2002.11824.x

    Article  Google Scholar 

  • J. Goudet (1995) ArticleTitleF-STAT (vers. 1.2): a computer program to calculate F-statistics J. Hered. 86 485–486

    Google Scholar 

  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3), updated from Goudet 1995. Available from http://www.unil.ch/izea/softwares/fstat.html

  • M.L. Hale P.W.W. Lurz M.D.F. Shirley S. Rushton R.M. Fuller K. Wolff (2001) ArticleTitleImpact of landscape management on the genetic structure of red squirrel populations Science 293 2246–2248 Occurrence Handle11567136 Occurrence Handle1:CAS:528:DC%2BD3MXntFCrtrs%3D Occurrence Handle10.1126/science.1062574

    Article  PubMed  CAS  Google Scholar 

  • I. Hanski (1999) Metapopulation Ecology Oxford University Press Oxford

    Google Scholar 

  • O. Hardy (2003) ArticleTitleEstimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers Mol. Ecol. 12 1577–1588 Occurrence Handle12755885 Occurrence Handle10.1046/j.1365-294X.2003.01835.x

    Article  PubMed  Google Scholar 

  • O. Hardy X. Vekemans (1999) ArticleTitleIsolation by distance in a continuous population: reconciliation between spatial autocorrelation and population genetics models Heredity 83 145–154 Occurrence Handle10469202 Occurrence Handle10.1046/j.1365-2540.1999.00558.x

    Article  PubMed  Google Scholar 

  • O.J. Hardy X. Vekemans (2002) ArticleTitleSPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels Mol. Ecol. Notes 2 618–620 Occurrence Handle10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • R. Leblois F. Rousset A. Estoup (2004) ArticleTitleInfluence of spatial and temporal heterogeneities on the estimation of demographic parameters in a continuous population using individual microsatellite data Genetics 166 1081–1092 Occurrence Handle15020488 Occurrence Handle10.1534/genetics.166.2.1081

    Article  PubMed  Google Scholar 

  • E. Michels K. Cottenie L. Neys K. Gelas ParticleDe P. Coppin L. Meester ParticleDe (2001) ArticleTitleGeographical and genetic distances among zooplankton populations in a set of interconnected ponds: a plea for using GIS modelling of the effective geographical distance Mol. Ecol. 10 1929–1938 Occurrence Handle11555237 Occurrence Handle1:STN:280:DC%2BD3MrgsFKktQ%3D%3D Occurrence Handle10.1046/j.1365-294X.2001.01340.x

    Article  PubMed  CAS  Google Scholar 

  • A. Moilanen I. Hanski (2001) ArticleTitleOn the use of connectivity measures in spatial ecology Oikos 95 147–151 Occurrence Handle10.1034/j.1600-0706.2001.950116.x

    Article  Google Scholar 

  • J.E. Neigel (1997) ArticleTitleA comparison of alternative strategies for estimating gene flow from genetic markers Annu. Rev. Ecol. Syst. 28 105–128 Occurrence Handle10.1146/annurev.ecolsys.28.1.105

    Article  Google Scholar 

  • D.C. Payer D.J. Harrison (2003) ArticleTitleInfluence of forest structure on habitat use by American marten in an industrial forest For. Ecol. Manage. 179 145–156 Occurrence Handle10.1016/S0378-1127(02)00517-0

    Article  Google Scholar 

  • K.G. Poole A.D. Porter A. Vries Particlede C. Maundrell S.D. Grindal C.C. St. Clair (2004) ArticleTitleSuitability of a young deciduous-dominated forest for American marten and the effects of forest removal Can. J. Zool. 82 423–435 Occurrence Handle10.1139/z04-006

    Article  Google Scholar 

  • R Development Core Team 2005. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3–900051–07–0, URL http://www.R-project.org.

  • N. Ray (2004) ArticleTitlePathmatrix, a GIS tool to compute effective distances among samples Mol. Ecol. Notes 5 177–180 Occurrence Handle10.1111/j.1471-8286.2004.00843.x

    Article  Google Scholar 

  • F. Rousset (1997) ArticleTitleGenetics differentiation and estimation of gene flow from F-statistics under isolation by distance Genetics 145 1219–1228 Occurrence Handle9093870 Occurrence Handle1:STN:280:ByiB2cjnsVM%3D

    PubMed  CAS  Google Scholar 

  • F. Rousset (2000) ArticleTitleGenetic differentiation between individuals J. Evol. Biol. 13 58–62 Occurrence Handle10.1046/j.1420-9101.2000.00137.x

    Article  Google Scholar 

  • F. Rousset (2001a) Genetic approaches to the estimation of dispersal rates J. Clobert E. Danchin A.A. Dhondt J.D. Nichols (Eds) Dispersal Oxford University Press New York 18–28

    Google Scholar 

  • Rousset F. 2001b. Inferences from spatial population genetics. In: Balding D.J. (ed.), Handbook of Statistical Genetics, John Wiley and Sons 681–712.

  • F. Rousset (2004) Genetic Structure and Selection in Subdivided Populations Princeton University Press Princeton

    Google Scholar 

  • V. Selonen I.K. Hanski (2004) ArticleTitleYoung flying squirrels (Pteromys volans) dispersing in fragmented forests Behav. Ecol. 15 564–571 Occurrence Handle10.1093/beheco/arh049

    Article  Google Scholar 

  • E.C. Soutiere (1979) ArticleTitleEffects of timber harvesting on marten in Maine J. Wildl. Manage. 43 850–860

    Google Scholar 

  • J.D. Steventon J.T. Major (1982) ArticleTitleMarten use of habitat in a commercially clear-cut forest J. Wildl. Manage. 46 175–182

    Google Scholar 

  • J. Sumner F. Rousset A. Estoup C. Moritz (2001) ArticleTitleNeighbourhood sizedispersal and density estimates in the prickly forest skink (Gnypetoscincus queenslandiae) using individual genetic and demographic methods Mol. Ecol. 10 1917–1927 Occurrence Handle11555236 Occurrence Handle1:CAS:528:DC%2BD3MXmslyhtrg%3D Occurrence Handle10.1046/j.0962-1083.2001.01337.x

    Article  PubMed  CAS  Google Scholar 

  • P.D. Taylor L. Fahrig K. Henein G. Merriam (1993) ArticleTitleConnectivity is a vital element of landscape structure Oikos 68 571–573

    Google Scholar 

  • L. Tischendorf L. Fahrig (2000) ArticleTitleHow should we measure landscape connectivity? Landscape Ecol. 15 633–641 Occurrence Handle10.1023/A:1008177324187

    Article  Google Scholar 

  • L. Tischendorf L. Fahrig (2001) ArticleTitleOn the use of connectivity measures in spatial ecology. A reply Oikos 95 152–155 Occurrence Handle10.1034/j.1600-0706.2001.950117.x

    Article  Google Scholar 

  • G. Verbeylen L. Bruyn ParticleDe F. Adriaensen E. Matthysen (2003) ArticleTitleDoes matrix resistance influence Red suirrel (Sciurus vulgairs L. 1758) distribution in an urban landscape? Landscape Ecol. 18 791–805 Occurrence Handle10.1023/B:LAND.0000014492.50765.05

    Article  Google Scholar 

  • C.C. Vos A.G. Antonisse-de-Jong P.W. Goedhart M.J.M. Smulders (2001) ArticleTitleGenetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis) Heredity 86 598–608 Occurrence Handle11554976 Occurrence Handle1:CAS:528:DC%2BD3MXmvFKrsLY%3D Occurrence Handle10.1046/j.1365-2540.2001.00865.x

    Article  PubMed  CAS  Google Scholar 

  • W.R. Watt J.A. Baker D.M. Hogg J.G. McNicol B.J. Naylor (1996) Forest Management Guidelines for the Provision of Marten Habitat Queen’ Printer for Ontario Sault Ste. Marie

    Google Scholar 

  • J.A. Wiens (2001) The landscape context of dispersal J. Clobert E. Danchin A.A. Dhondt J.D. Nichols (Eds) Dispersal Oxford University Press New York 96–109

    Google Scholar 

  • S. Wright (1943) ArticleTitleIsolation by distance Genetics 28 114–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Broquet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broquet, T., Ray, N., Petit, E. et al. Genetic isolation by distance and landscape connectivity in the American marten (Martes americana). Landscape Ecol 21, 877–889 (2006). https://doi.org/10.1007/s10980-005-5956-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-005-5956-y

Keywords

Navigation