Skip to main content
Log in

Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the bioenergy potential of green microalgae Scenedesmus acuminatus was evaluated through the psychochemical characteristics and kinetic study of pyrolysis, where the results indicate a good candidate for application in the thermochemical process due to its low moisture and ash content and high calorific value. Its thermal behavior under a heating rate of 10 °C min−1 and inert atmosphere shows that decomposition occurs in two stages. Stage I (125–309 °C) involves the pyrolysis of carbohydrates and protein and stage II (309–501 °C) the pyrolysis of lipids. The Starink isoconversional method showed a better application for simulation curves, compared with methods of FWO and KAS. The average values of activated energy were 107.1 and 132.6 kJ mol−1 for stages I and II, respectively, which indicates that pyrolysis occurs more easily in stage I than in stage II. The conversion rate curves show that the calculated kinetic parameters are satisfactory for the evaluation of the thermochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saber M, Nakhshiniev B, Yoshikawa K. A review of production and upgrading of algal bio-oil. Renew Sustain Energy Rev. 2016;58:918–30.

    Article  CAS  Google Scholar 

  2. Suganya T, Varman M, Masjuki HH, Renganathan S. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sustain Energy Rev. 2016;55:909–41.

    Article  CAS  Google Scholar 

  3. Chen W-H, Wu Z-Y, Chang J-S. Isothermal and non-isothermal torrefaction characteristics and kinetics of microalga Scenedesmus obliquus CNW-N. Bioresour Technol. 2014;155:245–51.

    Article  CAS  PubMed  Google Scholar 

  4. Chandra TS, Deepak RS, Kumar MM, Mukherji S, Chauhan VS, Sarada R, Mudliar SN. Evaluation of indigenous fresh water microalga Scenedesmus obtusus for feed and fuel applications: effect of carbon dioxide, light and nutrient sources on growth and biochemical characteristics. Bioresour Technol. 2016;207:430–9.

    Article  CAS  Google Scholar 

  5. Bordoloi N, Narzari R, Sut D, Saikia R, Chutia RS, Kataki R. Characterization of bio-oil and its sub-fractions from pyrolysis of Scenedesmus dimorphus. Renew Energy. 2016;98:245–53.

    Article  CAS  Google Scholar 

  6. Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010;157:481–94.

    Article  CAS  Google Scholar 

  7. Liang F, Zhang T, Xiang H, Yang X, Hu W, Mi B, Liu Z. Pyrolysis characteristics of cellulose derived from moso bamboo and poplar. J Therm Anal Calorim. 2018;132:1359–65.

    Article  CAS  Google Scholar 

  8. Ahmad MS, Mehmood MA, Ye G, Al-Ayed OS, Ibrahim M, Rashid U, Luo H, Qadir G, Nehdi IA. Thermogravimetric analyses revealed the bioenergy potential of Eulaliopsis binata. J Therm Anal Calorim. 2017;130:1237–47.

    Article  CAS  Google Scholar 

  9. Thakur LS, Varma AK, Mondal P. Analysis of thermal behavior and pyrolytic characteristics of vetiver grass after phytoremediation through thermogravimetric analysis. J Therm Anal Calorim. 2018;131:3053–64.

    Article  CAS  Google Scholar 

  10. Wang X, Wang X, Qin G, Chen M, Wang J. Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. J Therm Anal Calorim. 2018;132:1317–23.

    Article  CAS  Google Scholar 

  11. Ye G, Luo H, Ren Z, Ahmad MS, Liu C-G, Tawab A, Al-Ghafari AB, Omar U, Gull M, Mehmood MA. Evaluating the bioenergy potential of Chinese liquor-industry waste through pyrolysis, thermogravimetric, kinetics and evolved gas analyses. Energy Convers Manag. 2018;163:13–21.

    Article  CAS  Google Scholar 

  12. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  13. Vyazovkin S, Burnham AK, Criado JM, Pérez-maqueda LA, Popescu C, Sbirrazzuoli N. Thermochimica Acta ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  14. ASTM. E1131-08: Standard test method for compositional analysis by thermogravimetry. Annu B ASTM Stand. West Conshohocken: ASTM International; 2014. p. 1–6.

  15. Batistella L, Silva V, Suzin RC, Virmond E, Althoff CA, Moreira RFPM, José HJ. Gaseous emissions from sewage sludge combustion in a moving bed combustor. Waste Manag. 2015;46:430–9.

    Article  CAS  PubMed  Google Scholar 

  16. da Silva JCG, Alves JLF, de Galdino WVA, Andersen SLF, de Sena RF. Pyrolysis kinetic evaluation by single-step for waste wood from reforestation. Waste Manag. 2018;72:265–73.

    Article  CAS  PubMed  Google Scholar 

  17. Pacioni TR, Soares D, Di Domenico M, Rosa MF, Moreira RFPM, José HJ. Bio-syngas production from agro-industrial biomass residues by steam gasification. Waste Manag. 2016;58:221–9.

    Article  CAS  PubMed  Google Scholar 

  18. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.

    Article  CAS  Google Scholar 

  19. Kan T, Strezov V, Evans TJ. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sustain Energy Rev. 2016;57:1126–40.

    Article  CAS  Google Scholar 

  20. ASTM. D2702-05: standard practice for rubber chemicals—determination of infrared absorption characteristics. Annu B ASTM Stand. West Conshohocken: ASTM International; 2016. p. 4.

  21. Khawam A, Flanagan DR. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem B. 2006;110:17315–28.

    Article  CAS  PubMed  Google Scholar 

  22. Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.

    Article  CAS  Google Scholar 

  23. Chen C, Lu Z, Ma X, Long J, Peng Y, Hu L, Lu Q. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresour Technol. 2013;144:563–71.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SW, Koo BS, Lee DH. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresour Technol. 2014;162:96–102.

    Article  CAS  PubMed  Google Scholar 

  25. López-González D, Fernandez-Lopez M, Valverde JL, Sanchez-Silva L. Pyrolysis of three different types of microalgae: kinetic and evolved gas analysis. Energy. 2014;73:33–43.

    Article  CAS  Google Scholar 

  26. Tahmasebi A, Kassim MA, Yu J, Bhattacharya S. Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresour Technol. 2013;150:15–27.

    Article  CAS  PubMed  Google Scholar 

  27. Gong X, Zhang B, Zhang Y, Huang Y, Xu M. Investigation on pyrolysis of low lipid microalgae Chlorella vulgaris and Dunaliella salina. Energy Fuels. 2014;28:95–103.

    Article  CAS  Google Scholar 

  28. García R, Pizarro C, Lavín AG, Bueno JL. Spanish biofuels heating value estimation. Part II: proximate analysis data. Fuel. 2014;117:1139–47.

    Article  CAS  Google Scholar 

  29. Yu Y, Yang Y, Cheng Z, Blanco PH, Liu R, Bridgwater AV, Cai J. Pyrolysis of rice husk and corn stalk in auger reactor. 1. Characterization of char and gas at various temperatures. Energy Fuels. 2016;30:10568–74.

    Article  CAS  Google Scholar 

  30. Boumanchar I, Chhiti Y, Alaoui FEM, El Ouinani A, Sahibed-Dine A, Bentiss F, Jama C, Bensitel M. Effect of materials mixture on the higher heating value: case of biomass, biochar and municipal solid waste. Waste Manag. 2017;61:78–86.

    Article  CAS  PubMed  Google Scholar 

  31. da Silva JCG, Alves JLF, Galdino WVA, Moreira RFPM, José HJ, de Sena RF, Andersen SLF. Combustion of pistachio shell: physicochemical characterization and evaluation of kinetic parameters. Environ Sci Pollut Res. 2017;1:1–10.

    Google Scholar 

  32. García R, Pizarro C, Lavín AG, Bueno JL. Characterization of Spanish biomass wastes for energy use. Bioresour Technol. 2012;103:249–58.

    Article  CAS  PubMed  Google Scholar 

  33. de Sena RF, Claudino A, Moretti K, Bonfanti ÍCPP, Moreira RFPM, José HJ. Biofuel application of biomass obtained from a meat industry wastewater plant through the flotation process—a case study. Resour Conserv Recycl. 2008;52:557–69.

    Article  Google Scholar 

  34. Zhan H, Yin X, Huang Y, Yuan H, Xie J, Wu C, Shen Z, Cao J. Comparisons of formation characteristics of NOx precursors during pyrolysis of lignocellulosic industrial biomass wastes. Energy Fuels. 2017;31:9557–67.

    Article  CAS  Google Scholar 

  35. Difusa A, Mohanty K, Goud VV. The chemometric approach applied to FTIR spectral data for the analysis of lipid content in microalgae cultivated in different nitrogen sources. Biomass Convers Biorefinery. 2016;6:427–33.

    Article  CAS  Google Scholar 

  36. Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol Biochem. 2012;54:70–7.

    Article  CAS  PubMed  Google Scholar 

  37. Silverstein RM, Webster FX, Kiemle DJ. Spectrometric identification of organic compounds. 7th ed. New York: Wiley; 2005.

    Google Scholar 

  38. Sanchez-Silva L, López-González D, Garcia-Minguillan AM, Valverde JL. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae. Bioresour Technol. 2013;130:321–31.

    Article  CAS  PubMed  Google Scholar 

  39. Hu M, Chen Z, Guo D, Liu C, Xiao B, Hu Z, Liu S. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol. 2015;177:41–50.

    Article  CAS  PubMed  Google Scholar 

  40. Vo TK, Ly HV, Lee OK, Lee EY, Kim CH, Seo J-W, Kim J, Kim S-S. Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy. 2017;118:369–76.

    Article  CAS  Google Scholar 

  41. Zanatta ER, Reinehr TO, Awadallak JA, Kleinübing SJ, dos Santos Junior SF, Bariccatti RA, Arroyo PA, da Silva EA. Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J Therm Anal Calorim. 2016;125:437–45.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support to this research from the National Council for Scientific and Technological Development (CNPq) and the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Constantino Gomes Da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, J.L.F., Da Silva, J.C.G., Costa, R.L. et al. Investigation of the bioenergy potential of microalgae Scenedesmus acuminatus by physicochemical characterization and kinetic analysis of pyrolysis. J Therm Anal Calorim 135, 3269–3280 (2019). https://doi.org/10.1007/s10973-018-7506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7506-2

Keywords

Navigation