Skip to main content
Log in

Pyrolysis characteristics of cellulose derived from moso bamboo and poplar

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To compare with pyrolysis characteristics of cellulose from moso bamboo and poplar, samples were pyrolyzed with different heating rates through thermogravimetric analysis (TG). The kinetics was calculated by Kissinger–Akahira–Sunose method. The results showed that pyrolysis process of moso bamboo and poplar fiber included three stages, and the main pyrolysis occurred in the second step. Moso bamboo fiber had a higher start temperature, a lower end temperature and a more mass loss at each heating rate in the main pyrolysis stage. With increase in heating rate, the temperature corresponding to the maximum of mass loss increased and the DTG curve shifted to higher temperature. The reaction rates varied at different heating rates. The activation energy of cellulose from moso bamboo was lower than poplar cellulose, indicating cellulose of moso bamboo was easier to be pyrolyzed. The results from this research will provide guidance to thermal conversion of moso bamboo and poplar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gottipati R, Mishra S. A kinetic study on pyrolysis and combustion characteristics of oil cakes: effect of cellulose and lignin content. J Fuel Chem Technol. 2011;39:265–70.

    Article  CAS  Google Scholar 

  2. Wang J, Chen M, Zhang MX, Min FF, Chen MG. Three kinds of biomass pyrolysis dynamics research. J Harbin Instit Technol. 2009;41:180–3.

    Google Scholar 

  3. Wilk M, Magdziarz A. Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus. Energy. 2017;140:1292–304.

    Article  CAS  Google Scholar 

  4. Rath J, Steiner G, Wolfinger MG. Tar cracking from fast pyrolysis of large beech wood particles. J Anal Appl Pyrolysis. 2002;62:83–92.

    Article  CAS  Google Scholar 

  5. Branca C, Di Blasi C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim Acta. 2013;565:58–64.

    Article  CAS  Google Scholar 

  6. Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  7. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Polym Chem. 1969;7:41–6.

    CAS  Google Scholar 

  8. Sánchez JD, Ramírez GE, Barajas MJ. Comparative kinetic study of the pyrolysis of mandarin and pineapple peel. J Anal Appl Pyrolysis. 2016;118:192–201.

    Article  Google Scholar 

  9. Jeguirim M, Bikai J, Elmay Y, Limousy L, Njeugan E. Thermal characterization and pyrolysis kinetics of tropical biomass feedstocks for energy recovery. Energy Sustain Dev. 2014;23:188–93.

    Article  CAS  Google Scholar 

  10. Rocha EPA, Sermyagina E, Vakkilainen E, Colodette JL, Oliverira LM, Cardoso M. Kinetics of pyrolysis of some biomasses widely available in Brazil. J Therm Anal Calorim. 2017;130:1445–54.

    Article  CAS  Google Scholar 

  11. Wang J, Chen M, Zhang MX, Min FF, Chen MG. Kinetic study on thermolysis of three different biomass species. J Harbin Inst Technol. 2009;7:187–90.

    Google Scholar 

  12. Shih YF. A study of the fiber obtained from the water bamboo husks. Bioresour Technol. 2007;98:819–28.

    Article  CAS  Google Scholar 

  13. Liu X, Yu W. Evaluating the thermal stability of high performance fibers by TGA. J Appl Polym Sci. 2006;99:937–44.

    Article  CAS  Google Scholar 

  14. Wang LL, Zhang DS, Hong Z. An analysis on the characteristics of pyrogenation and carbonization shrinkage of bamboo timber. J Bamboo Res. 2005;3:034–8.

    Google Scholar 

  15. Wan X, Jiang X. Comprehensive utilization of bamboo surplus material by processing. Technol Dev Enterp. 2006;7:073–5.

    Google Scholar 

  16. Lin SZ, Zhang ZY, Zhang Q, Lin YZ. Progress in the study of molecular genetic improvements of poplar in China. J Integr Plant Biol. 2006;48:1001–7.

    Article  CAS  Google Scholar 

  17. Fang SZ. Silviculture of poplar plantation in China: a review. J Appl Ecol. 2008;19:2308–16.

    Google Scholar 

  18. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis. 2014;105:143–50.

    Article  CAS  Google Scholar 

  19. Garcia-Maraver A, Perez-Jimenez JA, Serrano-Bernardo F, Zamorano M. Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees. Renew Energy. 2015;83:897–904.

    Article  Google Scholar 

  20. Mani T, Murugan P, Abedi J, Mahinpey N. Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem Eng Res Des. 2010;88:952–8.

    Article  CAS  Google Scholar 

  21. Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.

    Article  CAS  Google Scholar 

  22. Kim SS, Kim J, Park YH, Park YK. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101:9797–802.

    Article  CAS  Google Scholar 

  23. Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Bioresour Technol. 2009;100:6496–504.

    Article  CAS  Google Scholar 

  24. Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80.

    Article  CAS  Google Scholar 

  25. Khawam A. Application of solid-state kinetics to desolvation reactions. 2007.

  26. Magdziarz A, Wilk M, Straka R. Combustion process of torrefied wood biomass. J Therm Anal Calorim. 2017;127:1339–49.

    Article  CAS  Google Scholar 

  27. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by ‘13th Five Years Plan Study on manufacturing technology of bamboo wastes and its mechanism (Grant No. 2016YFD0600906) and ‘Basic Scientific Research Funds of International Centre for Bamboo and Rattan-Co-firing technology of torrefied bamboo and coal’ (Grant No. 1632016011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijia Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, F., Zhang, T., Xiang, H. et al. Pyrolysis characteristics of cellulose derived from moso bamboo and poplar. J Therm Anal Calorim 132, 1359–1365 (2018). https://doi.org/10.1007/s10973-017-6920-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6920-1

Keywords

Navigation