Skip to main content
Log in

Analysis of thermal behavior and pyrolytic characteristics of vetiver grass after phytoremediation through thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, pyrolysis experiments of vetiver grass (Vetiveria zizanioides) after phytoremediation of arsenic, fluoride and manganese were carried out in a thermogravimetric analyzer under inert atmosphere at three heating rates of 5, 10 and 20 °C min−1 in order to investigate the thermal degradation behavior of vetiver grass. The physicochemical properties of vetiver grass were investigated by proximate and ultimate analysis, lignocellulosic composition, Bomb calorimetry and FTIR spectroscopy. The results showed that vetiver grass has high volatile matter content and high calorific value. Kinetic parameters for pyrolysis of vetiver grass were evaluated using three different kinetic models suggested by Kissinger–Akahira–Sunose (KAS), Ozawa–Flynn–Wall (OFW) and Coasts–Redfern using TGA data. The average activation energy values of vetiver grass calculated by using KAS and OFW models are found as 151.23 and 161.33 kJ mol−1, respectively. Coasts-Redfern model has been used to compute the pre-exponential factor. The physicochemical properties and kinetic parameters verify the suitability of vetiver grass as a potential feedstock for pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abnisa F, Daud WMAW. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers Manag. 2014;87:71–85.

    Article  CAS  Google Scholar 

  2. Cao L, Yuan X, Jiang L, Li C, Xiao Z, Huang Z, Chen X, Zeng G, Li H. Thermogravimetric characteristics and kinetics analysis of oil cake and torrefied biomass blends. Fuel. 2016;175:129–36.

    Article  CAS  Google Scholar 

  3. Sudha P, Ravindranath NH. Land availability and biomass production potential in India. Biomass Bioenergy. 1999;16:207–21.

    Article  Google Scholar 

  4. Kumar A, Prasad R. Production of renewable energy and waste water management from vetiver grass. In: Raju NJ, Gossel W, Ramanathan AL, Sudhakar M, editors. Management of water, energy and bio-resources in the era of climate change: emerging issues and challenges. Springer International Publishing. 2015. pp.169–81.

  5. Singh S, Melo JS, Eapen S, D’souza SF. Potential of vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of phenol. Ecotoxicol Environ Saf. 2008;71:671–6.

    Article  CAS  Google Scholar 

  6. http://docplayer.net/21343480-Cultivation-of-vetiver.html. Accessed 26 Feb 2017.

  7. http://www.theresasjoquist.com/?p=263. Accessed 13 Sep 2017.

  8. Singh V, Thakur L, Mondal P. Removal of lead and chromium from synthetic wastewater using Vetiveria zizanioides. CLEAN Soil Air Water. 2015;43:538–43.

    Article  CAS  Google Scholar 

  9. http://haitireconstruction.ning.com/page/alternative-fuel-for-haiti. Accessed 26 Feb 2017.

  10. Tripathi M, Sahu JN, Ganesan P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev. 2016;55:467–81.

    Article  CAS  Google Scholar 

  11. Abnisa F, Arami-Niya A, Daud WW, Sahu JN, Noor IM. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag. 2013;76:1073–82.

    Article  CAS  Google Scholar 

  12. Santos NA, Magriotis ZM, Saczk AA, Fássio GT, Vieira SS. Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy Fuels. 2015;29:2351-17.

    Google Scholar 

  13. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.

    Article  CAS  Google Scholar 

  14. Alwani MS, Khalid HPSA, Sulaiman O, Islam MN, Dungani R. An approach to using agricultural waste fibres in biocomposities application: thermogravimetric analysis and activation energy study. BioResources. 2014;9:218–30.

    CAS  Google Scholar 

  15. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  16. Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.

    Article  CAS  Google Scholar 

  17. Varma AK, Mondal P. Physicochemical characterization and kinetic study of pine needle for pyrolysis process. J Therm Anal Calorim. 2016;124:487–97.

    Article  CAS  Google Scholar 

  18. Varma AK, Mondal P. Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Res Technol. 2016;138:052205.

    Article  Google Scholar 

  19. Jeguirim M, Trouvé G. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis. Bioresour Technol. 2009;100:4026–31.

    Article  CAS  Google Scholar 

  20. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102:6230–8.

    Article  CAS  Google Scholar 

  21. Chutia RS, Kataki R, Bhaskar T. Thermogravimetric and decomposition kinetic studies of Mesua ferrea L. deoiled cake. Bioresour Technol. 2013;139:66–72.

    Article  CAS  Google Scholar 

  22. Varma AK, Mondal P. Physicochemical characterization and pyrolysis kinetics of wood sawdust. Energy Sources Part A. 2016;38:2536–44.

    Article  CAS  Google Scholar 

  23. Sait HH, Hussain A, Salema AA, Ani FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–9.

    Article  CAS  Google Scholar 

  24. Aburto J, Moran M, Galano A, Torres-García E. Non-isothermal pyrolysis of pectin: a thermochemical and kinetic approach. J Anal Appl Pyrolysis. 2015;112:94–104.

    Article  CAS  Google Scholar 

  25. Lopez-Velazquez MA, Santes V, Balmaseda J, Torres-Garcia E. Pyrolysis of orange waste: a thermo-kinetic study. J Anal Appl Pyrolysis. 2013;99:170–7.

    Article  CAS  Google Scholar 

  26. Açıkalın K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:227–35.

    Article  Google Scholar 

  27. Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD. Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol. 2010;101:8389–95.

    Article  CAS  Google Scholar 

  28. Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. 2004;85:1201–11.

    Article  CAS  Google Scholar 

  29. Channiwala SA, Parikh PP. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel. 2002;81:1051–63.

    Article  CAS  Google Scholar 

  30. Basu P. Biomass gasification and pyrolysis: practical design and theory. Amsterdam: Associated Press for Elsevier Inc.; 2010.

    Google Scholar 

  31. Niu Y, Tan H, Liu Y, Wang X, Xu T. The effect of particle size and heating rate on pyrolysis of waste capsicum stalks biomass. Energy Sources Part A. 2013;35:1663–9.

    Article  CAS  Google Scholar 

  32. Kumar RR, Ramesh D, Mutanda T, Rawat I, Bux F. Thermal behavior and pyrolytic characteristics of freshwater Scenedesmus sp. biomass. Energy Sources Part A. 2015;37:1383–91.

    Article  Google Scholar 

  33. Asadullah M, Rahman MA, Ali MM, Rahman MS, Motin MA, Sultan MB, Alam MR. Production of bio-oil from fixed bed pyrolysis of bagasse. Fuel. 2007;86:2514–20.

    Article  CAS  Google Scholar 

  34. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  35. Jung SH, Kang BS, Kim JS. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J Anal Appl Pyrolysis. 2008;82:240–7.

    Article  CAS  Google Scholar 

  36. Fernandes ER, Marangoni C, Souza O, Sellin N. Thermochemical characterization of banana leaves as a potential energy source. Energy Convers Manag. 2013;75:603–8.

    Article  CAS  Google Scholar 

  37. Sellin N, de Oliveiraa BG, Marangonia C, Souzaa O, de Oliveirab AP, de Oliveiraa TM. Use of banana culture waste to produce briquettes. Chem Eng 2013;32:349–54.

    Google Scholar 

  38. Carrier M, Joubert JE, Danje S, Hugo T, Görgens J, Knoetze JH. Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresour Technol. 2013;150:129–38.

    Article  CAS  Google Scholar 

  39. Khatami R, Stivers C, Joshi K, Levendis YA, Sarofim AF. Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres. Combust Flame. 2012;159:1253–71.

    Article  CAS  Google Scholar 

  40. Marrugo G, Valdés CF, Chejne F. Characterization of Colombian agro industrial biomass residues as energy resources. Energy Fuels. 2016;30:8386–98.

    Article  CAS  Google Scholar 

  41. Liu R, Deng C, Wang J. Fast pyrolysis of corn straw for bio-oil production in a bench-scale fluidized bed reactor. Energy Sources Part A. 2013;32:10–9.

    Article  Google Scholar 

  42. Abbasi T, Abbasi SA. Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev. 2010;14:919–37.

    Article  CAS  Google Scholar 

  43. Nyakuma BB, Johari A, Ahmad A, Abdullah TA. Thermogravimetric analysis of the fuel properties of empty fruit bunch briquettes. Carbon. 2014;43:46–62.

    Google Scholar 

  44. Bilba K, Ouensanga A. Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse. J Anal Appl Pyrolysis. 1996;38:61–73.

    Article  CAS  Google Scholar 

  45. Asadieraghi M, Daud WM. Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: effects of demineralization by diverse acid solutions. Energy Convers Manag. 2014;82:71–82.

    Article  CAS  Google Scholar 

  46. Brahman KD, Kazi TG, Baig JA, Afridi HI, Arain SS, Saraj S, Arain MB, Arain SA. Biosorptive removal of inorganic arsenic species and fluoride from aqueous medium by the stem of Tecomella undulate. Chemosphere. 2016;150:320–8.

    Article  CAS  Google Scholar 

  47. Aiman S, Stubington JF. The pyrolysis kinetics of bagasse at low heating rates. Biomass Bioenergy. 1993;5:113–20.

    Article  CAS  Google Scholar 

  48. Thangalazhy-Gopakumar S, Al-Nadheri WMA, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production. Bioresour Technol. 2015;178:65–9.

    Article  CAS  Google Scholar 

  49. Jaroenkhasemmeesuk C, Tippayawong N. Thermal degradation kinetics of sawdust under intermediate heating rates. Appl Therm Eng. 2016;103:170–6.

    Article  CAS  Google Scholar 

  50. Guerrero MB, da Silva Paula MM, Zaragoza MM, Gutiérrez JS, Velderrain VG, Ortiz AL, Collins-Martínez V. Thermogravimetric study on the pyrolysis kinetics of apple pomace as waste biomass. Int J Hydrogen Energy. 2014;39:16619–27.

    Article  CAS  Google Scholar 

  51. Mehmood MA, Ye G, Luo H, Liu C, Malik S, Afzal I, Xu J, Ahmad MS. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour Technol. 2016;228:18–24.

    Article  Google Scholar 

  52. Ding Y, Ezekoye OA, Lu S, Wang C. Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Convers Manag. 2016;120:370–7.

    Article  CAS  Google Scholar 

  53. Zhu F, Feng Q, Xu Y, Liu R, Li K. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    Article  CAS  Google Scholar 

  54. Oladokun O, Ahmad A, Abdullah TAT, Nyakuma BB, Bello AAH, Al-Shatri AH. Multicomponent devolatilization kinetics and thermal conversion of Imperata cylindrica. Appl Therm Eng. 2016;105:931–40.

    Article  CAS  Google Scholar 

  55. Huang X, Cao JP, Zhao XY, Wang JX, Fan X, Zhao YP, Wei XY. Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel. 2016;169:93–8.

    Article  CAS  Google Scholar 

  56. Wu ZQ, Wang SZ, Zhao J, Chen L, Meng HY. Pyrolytic behavior and kinetic analysis of wheat straw and lignocellulosic biomass model compound. Adv Mater Res. 2014;860:550–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Mondal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, L.S., Varma, A.K. & Mondal, P. Analysis of thermal behavior and pyrolytic characteristics of vetiver grass after phytoremediation through thermogravimetric analysis. J Therm Anal Calorim 131, 3053–3064 (2018). https://doi.org/10.1007/s10973-017-6788-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6788-0

Keywords

Navigation