Skip to main content
Log in

Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis characteristics and kinetics of lignocellulosic biomass (cotton stalk) and seaweed (Gracilaria lemaneiformis) were studied comparatively. Results of the thermal degradation processes showed that the pyrolysis occurence of G. lemaneiformis is easier than that of cotton stalk. However, G. lemaneiformis released less volatile components and produced more solid residues. As the heating rate increased, the maximum mass loss rates for cotton stalk were decreased, while those for G. lemaneiformis were increased. Results of the kinetic analysis by Popescu method indicated that the pyrolysis mechanism of cotton stalk is three-dimensional diffusion, which can be described by Zhuralev, Lesokin, and Tempelmen (Z–L–T) equation \((G(\alpha ) = \{ [1/(1 - \alpha )]^{1/3} - 1\}^{2} )\), whereas that of G. lemaneiformis is random nucleation and nuclei growth, which can be described by Avrami–Erofeev equation \((G(\alpha ) = [ - \ln (1 - \alpha )]^{1/4} )\). The average activation energy values (192.17 and 146.11 kJ mol−1, respectively) of cotton stalk and G. lemaneiformis obtained by Popescu method are similar with those (189.88 and 153.79 kJ mol−1, respectively) calculated by Flynn–Wall–Ozawa (FWO) method. Moreover, the average activation energy of G. lemaneiformis is lower than that of cotton stalk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Du ZY, Li YC, Wang XQ, Wan YQ, Chen Q, Wang CG, Lin XY, Liu YH, Chen P, Ruan R. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol. 2011;102:4890–6.

    Article  CAS  Google Scholar 

  2. Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A. A comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass. Bioresour Technol. 2015;190:89–96.

    Article  CAS  Google Scholar 

  3. Wang XY, Qin GX, Chen MQ, Wang J. Microwave-assisted pyrolysis of cotton stalk with additives. BioResources. 2016;11:6125–36.

    CAS  Google Scholar 

  4. Zou SP, Wu YL, Yang MD, Li C, Tong JM. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.

    Article  CAS  Google Scholar 

  5. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  6. Damartzis T, Vamvuka D, Sfakiotakis S, Zabaniotou A. Thermal degradation studies and kinetic modeling of cardoon (Carnaracardunculus) pyrolysis using thermogravimetric analysis (TGA). Bioresour Technol. 2011;102:6230–8.

    Article  CAS  Google Scholar 

  7. Cao Q, Xie KC, Bao WR, Shen SG. Pyrolytic behavior of waste corn cob. Bioresour Technol. 2004;94:83–9.

    Article  CAS  Google Scholar 

  8. Khawam A, Flanagan DR. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics. J Phys Chem B. 2005;109:10073–80.

    Article  CAS  Google Scholar 

  9. Opfermann JR, Kaisersberger E, Flammersheim HJ. Model-free analysis of thermoanalytical data-advantages and limitations. Thermochim Acta. 2002;391:119–27.

    Article  CAS  Google Scholar 

  10. Cai JM, Bi LS. Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim. 2009;98:325–30.

    Article  CAS  Google Scholar 

  11. Kim SS, Kim J, Park YH, Park YK. Pyrolysis kinetics and decomposition characteristics of pine trees. Bioresour Technol. 2010;101:9797–802.

    Article  CAS  Google Scholar 

  12. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    Article  CAS  Google Scholar 

  13. Gai C, Dong YP, Zhang TH. The kinetic analysis of the pyrolysis of agricultural residue under non-isothermal conditions. Bioresour Technol. 2013;127:298–305.

    Article  CAS  Google Scholar 

  14. Wilson L, Yang W, Blasiak W, John GR, Mhilu CF. Thermal characterization of tropical biomass feedstocks. Energy Convers Manag. 2011;52:191–8.

    Article  CAS  Google Scholar 

  15. Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8.

    Article  CAS  Google Scholar 

  16. Debal M, Girods P. TG-FTIR kinetic study of the thermal cleaning of wood laminated flooring waste. J Therm Anal Calorim. 2014;118:141–51.

    Article  CAS  Google Scholar 

  17. Ross AB, Jones JM, Kubacki ML, Bridgeman T. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol. 2008;99:6494–504.

    Article  CAS  Google Scholar 

  18. Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH. Pyrolytic characteristics and kinetics of two brown algae and sodium alginate. Bioresour Technol. 2010;101:7131–6.

    Article  CAS  Google Scholar 

  19. Li DM, Chen LM, Zhang XW, Ye NH, Xing FG. Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass Bioenergy. 2011;35:1765–72.

    Article  CAS  Google Scholar 

  20. Zhao H, Yan HX, Dong SS, Zhang Y, Sun BB, Zhang CW, Ai YX, Chen BQ, Liu Q, Sui TT, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90.

    Article  CAS  Google Scholar 

  21. Ceylan S, Topcu Y, Eylan Z. Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour Technol. 2014;171:193–8.

    Article  CAS  Google Scholar 

  22. Wu KJ, Liu J, Wu YL, Chen Y, Li QH, Xiao X, Yang MD. Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol. 2014;163:18–25.

    Article  CAS  Google Scholar 

  23. Wang J, Wang GC, Zhang MX, Chen MQ, Li DM, Min FF, Chen MG, Zhang SP, Ren ZW, Yan YJ. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochem. 2006;41:1883–6.

    Article  CAS  Google Scholar 

  24. Popescu C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions: a variant on the Ozawa–Flynn–Wall method. Thermochim Acta. 1996;285:309–23.

    Article  CAS  Google Scholar 

  25. Shen CS, Zhou CR. Investigation of the thermal decomposition kinetics of bezafibrate. J Therm Anal Calorim. 2016;126:959–67.

    Article  CAS  Google Scholar 

  26. Wu JZ, Wang BF, Cheng FQ. Thermal and kinetic characteristics of combustion of coal sludge. J Therm Anal Calorim. 2017;129:1899–909.

    Article  CAS  Google Scholar 

  27. Yang HP, Yan R, Chen HP, Lee D, Zheng CG. Characteristics of hemicellulose, cellulose and lignin. Fuel. 2007;86:1781–8.

    Article  CAS  Google Scholar 

  28. Park HJ, Park YK, Dong J, Kim JS, Jeon JK, Kim SS, Kim J. Pyrolysis characteristics of Oriental white oak:kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Process Technol. 2009;90:186–95.

    Article  CAS  Google Scholar 

  29. Yanik J, Stahl R, Troeger N, Sinag A. Pyrolysis of algal biomass. J Anal Appl Pyrol. 2013;103:134–41.

    Article  CAS  Google Scholar 

  30. Anastasakis K, Ross AB, Jones JM. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. Fuel. 2011;90:598–607.

    Article  CAS  Google Scholar 

  31. Vo TK, Ly HV, Lee OK, Lee EY, Kim CH, Seo JW, Kim J, Kim SS. Pyrolysis characteristics and kinetics of microalgal Aurantiochytrium sp. KRS101. Energy. 2017;118:369–76.

    Article  CAS  Google Scholar 

  32. Li DM, Chen LM, Chen SL, Zhang XW, Chen FJ, Ye NH. Comparative evaluation of the pyrolytic and kinetic characteristics of a macroalga (Sargassum thunbergii) and a freshwater plant (Potamogeton crispus). Fuel. 2012;96:185–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the Anhui Province Prominent Young Talents Support Program (gxyq2017072) and the National Natural Science Foundation of China (20676002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, X., Qin, G. et al. Comparative study on pyrolysis characteristics and kinetics of lignocellulosic biomass and seaweed. J Therm Anal Calorim 132, 1317–1323 (2018). https://doi.org/10.1007/s10973-018-6987-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6987-3

Keywords

Navigation