Skip to main content
Log in

Thermal and vibrational characterization of human skin

Influence of the freezing process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

For a better understanding of the molecular and organizational changes in human dermis, biophysical methods were tested. The aim of this study was to find suitable and reproducible biomarkers for further clinical studies on intrinsic and extrinsic aging of dermis. Thermoporometry, hydric organization and thermal transitions of fresh and frozen skins were determined by differential scanning calorimetry (DSC). Fourier transform infrared spectroscopy (FTIR) was used to identify the absorption bands of the dermis especially in the 1800–1000 cm−1 zone and to discriminate between the different secondary structures of proteins. A widening of the pore size distribution is evidenced with freezing, but there is no significant difference between the hydric organization and the endothermic collagen denaturation of fresh and frozen skins. The global FTIR spectra and the second derivative spectra in the scanned zone are also identical in fresh and frozen dermis, validating the storage protocol. DSC and FTIR are well-suited techniques to characterize human skin, giving accurate results with high reproducibility. The acquisition of thermal and vibrational biomarkers of the skin at the mesoscale and nanoscale contributes to its better knowledge and is promising for further studies on skin aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res Technol. 2006;12:145–54.

    Article  Google Scholar 

  2. Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21C:16–29.

    Article  Google Scholar 

  3. Jung J-W, Cha S-H, Lee S-C, Chun I-K, Kim Y-P. Age-related changes of water content in the rat skin. J Dermatol Sci. 1997;14:12–9.

    Article  CAS  Google Scholar 

  4. Carrino DA, Onnerfjord P, Sandy JD, Cs-Szabo G, Scott PG, Sorrell JM, Heinegård D, Caplan AI. Age-related changes in the proteoglycans of human skin. Specific cleavage of decorin to yield a major catabolic fragment in adult skin. J Biol Chem. 2003;278:17566–72.

    Article  CAS  Google Scholar 

  5. Ngan CL, Basri M, Tripathy M, Karjiban RA, Abdul-Malek E. Skin intervention of fullerene-integrated nanoemulsion in structural and collagen regeneration against skin aging. Eur J Pharm Sci. 2015;70:22–8.

    Article  CAS  Google Scholar 

  6. Krieg T, Aumailley M. The extracellular matrix of the dermis: flexible structures with dynamic functions. Exp Dermatol. 2011;20:689–95.

    Article  CAS  Google Scholar 

  7. Song HK, Wehrli FW, Ma J. In vivo MR microscopy of the human skin. Magn Reson Med. 1997;37:185–91.

    Article  CAS  Google Scholar 

  8. Tajima S, Nishikawa T, Hatano H. Distribution of macromolecular components in human dermal connective tissue. Public Health. 1982;273(1–2):115–20.

    CAS  Google Scholar 

  9. Cleary E. Skin. In: Comper W, editor. Extracellular matrix. Amsterdam: Harwood Academic Publishers; 1996. p. 77–109.

    Google Scholar 

  10. Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007;6:75–82.

    Article  Google Scholar 

  11. Brincat M, Versi E, Moniz CF, Magos A, De Trafford J, Studd JWW. Skin collagen changes in postmenopausal women receiving different regimens of estrogen therapy. Obstet Gynecol. 1987;70:123–7.

    CAS  Google Scholar 

  12. Miyamae Y, Yamakawa Y, Kawabata M, Ozaki Y. A combined near-infrared diffuse reflectance spectroscopy and principal component analysis method of assessment for the degree of photoaging and physiological aging of human skin. Anal Sci. 2012;28:1159–64.

    Article  CAS  Google Scholar 

  13. Attas EM, Sowa MG, Posthumus TB, Schattka BJ, Mantsch HH, Zhang SL. Near-IR spectroscopic imaging for skin hydration: the long and the short of it. Biopolymers. 2002;67:96–106.

    Article  CAS  Google Scholar 

  14. Andanson J-M, Chan KLA, Kazarian SG. High-throughput spectroscopic imaging applied to permeation through the skin. Appl Spectrosc. 2009;63:512–7.

    Article  CAS  Google Scholar 

  15. Canuto HC, Fishbein KW, Huang A, Doty SB, Herbert RA, Peckham J, Pleshko N, Spencer RG. Characterization of skin abnormalities in a mouse model of osteogenesis imperfecta using high resolution magnetic resonance imaging and Fourier transform infrared imaging spectroscopy. NMR Biomed. 2012;25:169–76.

    Article  CAS  Google Scholar 

  16. Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC. Water and protein structure in photoaged and chronically aged Skin. J Invest Dermatol. 1998;111:1129–33.

    Article  CAS  Google Scholar 

  17. Bonnier F, Ali SM, Knief P, Lambkin H, Flynn K, McDonagh V, Healy C, Lee TC, Lyng FM, Byrne HJ. Analysis of human skin tissue by Raman microspectroscopy: dealing with the background. Vib Spectrosc. 2012;61:124–32.

    Article  CAS  Google Scholar 

  18. Fendel S, Schrader B. Investigation of skin and skin lesions by NIR-FT-Raman spectroscopy. Fresenius J Anal Chem. 1998;360:609–13.

    Article  CAS  Google Scholar 

  19. Zhang Q, Andrew Chan KL, Zhang G, Gillece T, Senak L, Moore DJ, Mendelsohn R, Flach CR. Raman microspectroscopic and dynamic vapor sorption characterization of hydration in collagen and dermal tissue. Biopolymers. 2011;95:607–15.

    Article  CAS  Google Scholar 

  20. McGee MP, Morykwas M, Shelton J, Argenta L. Collagen unfolding accelerates water influx, determining hydration in the interstitial matrix. Biophys J. 2012;103:2157–66.

    Article  CAS  Google Scholar 

  21. Wright AC, Bohning DE, Pecheny AP, Spicer KM. Magnetic resonance chemical shift microimaging of aging human skin in vivo: initial findings. Ski Res Technol. 1998;4:55–62.

    Article  CAS  Google Scholar 

  22. Aktas N, Tülek Y, Gökalp HY. Determination of freezable water content of beef semimembranous muscle DSC study. J Therm Anal. 1997;48:259–66.

    Article  CAS  Google Scholar 

  23. Panagopoulou A, Kyritsis A, Aravantinou AM, Nanopoulos D, i Serra RS, GómezRibelles JL, Shinyashiki N, Pissis P. Glass transition and dynamics in lysozyme–water mixtures over wide ranges of composition. Food Biophys. 2011;6:199–209.

    Article  Google Scholar 

  24. Samouillan V, Tintar D, Lacabanne C. Hydrated elastin. Dynamics of water and protein followed by dielectric spectroscopies. Chem Phys. 2011;385:19–26.

    Article  CAS  Google Scholar 

  25. Kerch G, Zicans J, Merijs RM, Stunda-Ramava A, Jakobson E. The use of thermal analysis in assessing the effect of bound water content and substrate rigidity on prevention of platelet adhesion. J Therm Anal Calorim. 2015;120:533–9.

    Article  CAS  Google Scholar 

  26. Miles CA, Burjanadze TV, Bailey AJ. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. J Mol Biol. 1995;245:437–46.

    Article  CAS  Google Scholar 

  27. Miles CA, Ghelashvili M. Polymer-in-a-box mechanism for the thermal stabilization of collagen molecules in fibers. Biophys J. 1999;76:3243–52.

    Article  CAS  Google Scholar 

  28. Lee J, Pereira C, Abdulla D, Naimark W, Crawford I. A multi-sample for collagenous denaturation biomaterials temperature tester. Mol Eng phys. 1995;17:115–21.

    Article  CAS  Google Scholar 

  29. Samouillan V, Dandurand-Lods J, Lamure A, Maurel E, Lacabanne C, Gerosa G, Venturini A, Casarotto D, Gherardini L, Spina M. Thermal analysis characterization of aortic tissues for cardiac valve bioprostheses. J Biomed Mater Res. 1999;46:531–8.

    Article  CAS  Google Scholar 

  30. Budrugeac P. Phase transitions of a parchment manufactured from deer leather. J Therm Anal Calorim. 2015;120:103–12.

    Article  CAS  Google Scholar 

  31. Nöt LG, Naumov I, Vámhidy L, Lőrinczy D, Wiegand N. Comparison of thermal characteristics of degenerated and inflamed human collagen structures with differential scanning calorimetry. J Therm Anal Calorim. 2012;113:273–9.

    Article  Google Scholar 

  32. Torres K, Trębacz H, Bącik-Donica M, Atras A, Torres A, Plewa Z. Does thermodynamic stability of peritoneal collagen change during laparoscopic cholecystectomies? A differential scanning calorimetry (DSC) study. Surg Endosc. 2014;28:2623–6.

    Article  Google Scholar 

  33. Burton B, Gaspar A, Josey D, Tupy J, Grynpas MD, Willett TL. Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone. 2014;61:71–81.

    Article  CAS  Google Scholar 

  34. Flandin F, Buffevant C, Herbage D. A differential scanning calorimetry analysis of the age-related changes in the thermal stability of rat skin collagen. Biochim Biophys Acta Protein Struct Mol Enzymol. 1984;791:205–11.

    Article  CAS  Google Scholar 

  35. Le Lous M, Flandin F, Herbage D, Allain JC. Influence of collagen denaturation on the chemorheological properties of skin, assessed by differential scanning calorimetry and hydrothermal isometric tension measurement. Biochim Biophys Acta Gen Subj. 1982;717:295–300.

    Article  Google Scholar 

  36. Miles CA, Avery NC. Thermal stabilization of collagen in skin and decalcified bone. Phys Biol. 2011;8:026002.

    Article  Google Scholar 

  37. Sun WQ, Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater. 2008;4:817–26.

    Article  Google Scholar 

  38. Melling M, Pfeiler W, Karimian-Teherani D, Schnallinger M, Sobal G, Zangerle C, Menzel EJ. Differential scanning calorimetry, biochemical, and biomechanical analysis of human skin from individuals with diabetes mellitus. Anat Rec. 2000;259:327–33.

    Article  CAS  Google Scholar 

  39. Wiegand N, Naumov I, Nőt LG, Vámhidy L, Lőrinczy D. Differential scanning calorimetric examination of pathologic scar tissues of human skin. J Therm Anal Calorim. 2012;111:1897–902.

    Article  Google Scholar 

  40. Fathima NN, Kumar MP, Rao JR, Nair BU. A DSC investigation on the changes in pore structure of skin during leather processing. Thermochim Acta. 2010;501:98–102.

    Article  CAS  Google Scholar 

  41. Brun M, Lallemand A, Quinson J-F, Eyraud C. A new method for the simultaneous determination of the size and shape of pores: the thermoporometry. Thermochim Acta. 1977;21:59–88.

    Article  CAS  Google Scholar 

  42. Landry MR. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta. 2005;433:27–50.

    Article  CAS  Google Scholar 

  43. Ishikiriyama K, Todoki M, Kobayashi T, Tanzawa H. Pore size distribution measurements of poly(methyl methacrylate) hydrogel membranes for artificial kidneys using differential scanning calorimetry. J Colloid Interface Sci. 1995;173:419–28.

    Article  CAS  Google Scholar 

  44. Majda D, Makowski W, Mańko M. Pore size distribution of micelle-templated silicas studied by thermoporosimetry using water and n-heptane. J Therm Anal Calorim. 2012;109:663–9.

    Article  CAS  Google Scholar 

  45. Ishikiriyama K, Todoki M, Motomura K. Pore size distribution (PSD) measurements of silica gels by means of differential scanning calorimetry. J Colloid Interface Sci. 1995;171:92–102.

    Article  CAS  Google Scholar 

  46. Fashandi H, Karimi M. Characterization of porosity of polystyrene fibers electrospun at humid atmosphere. Thermochim Acta. 2012;547:38–46.

    Article  CAS  Google Scholar 

  47. Hay JN, Laity PR. Observations of water migration during thermoporometry studies of cellulose films. Polymer (Guildf). 2000;41:6171–80.

    Article  CAS  Google Scholar 

  48. Heys KR, Friedrich MG, Truscott RJW. Free and bound water in normal and cataractous human lenses. Invest Ophthalmol Vis Sci. 2008;49:1991–7.

    Article  Google Scholar 

  49. Gniadecka M, Nielsen OF, Christensen DH, Wulf HC. Structure of water, proteins, and lipids in intact human skin, hair, and nail. J Invest Dermatol. 1998;110:393–8.

    Article  CAS  Google Scholar 

  50. Perry A, Stypa MP, Tenn BK, Kumashiro KK. On Elastin C NMR reveals effects of temperature and hydration. Biophys J. 2002;82:1086–95.

    Article  CAS  Google Scholar 

  51. Panagopoulou A, Kyritsis A, Vodina M, Pissis P. Dynamics of uncrystallized water and protein in hydrated elastin studied by thermal and dielectric techniques. Biochim Biophys Acta. 2013;1834:977–88.

    Article  CAS  Google Scholar 

  52. Leveque JL, Garson JC, Boudouris G. Water in keratin: study of the depolarization thermal current peak II. Biopolymers. 1977;16:1725–33.

    Article  CAS  Google Scholar 

  53. Kaatze U. The dielectric properties of water in its different states of interaction. J Solution Chem. 1997;26:1049–112.

    Article  CAS  Google Scholar 

  54. Melacini G, Bonvin AM, Goodman M, Boelens R, Kaptein R. Hydration dynamics of the collagen triple helix by NMR. J Mol Biol. 2000;300:1041–9.

    Article  CAS  Google Scholar 

  55. Hatakeyama H, Hatakeyama T. Interaction between water and hydrophilic polymers. Thermochim Acta. 1998;308:3–22.

    Article  CAS  Google Scholar 

  56. Einhorn-Stoll U, Hatakeyama H, Hatakeyama T. Influence of pectin modification on water binding properties. Food Hydrocoll. 2012;27:494–502.

    Article  CAS  Google Scholar 

  57. Samouillan V, Delaunay F, Dandurand J, Merbahi N, Gardou JP, Yousfi M, Gandaglia A, Spina M, Lacabanne C. The use of thermal Techniques for the characterization and selection of natural biomaterials. J Funct Biomater. 2011;2:230–48.

    Article  CAS  Google Scholar 

  58. Nandi N, Bhattacharyya K, Bagchi B. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem Rev. 2000;100:2013–46.

    Article  CAS  Google Scholar 

  59. Gevorkian SG, Allahverdyan AE, Gevorgyan DS, Simonian AL, Hu CK. Stabilization and anomalous hydration of collagen fibril under heating. PLoS ONE. 2013;8(11):e78526.

    Article  CAS  Google Scholar 

  60. Bella J, Brodsky B, Berman HM. Hydration structure of a collagen peptide. Structure. 1995;3:893–906.

    Article  CAS  Google Scholar 

  61. Pouliot R, Germain L, Auger F, Tremblay N, Juhasz J. Physical characterization of the stratum corneum of an in vitro human skin equivalent produced by tissue engineering and its comparison with normal human skin by ATR-FTIR spectroscopy and thermal analysis (DSC). Biochim Biophys Acta. 1999;1439:341–52.

    Article  CAS  Google Scholar 

  62. Babita K, Kumar V, Rana V, Jain S, Tiwary AK. Thermotropic and spectroscopic behavior of skin: relationship with percutaneous permeation enhancement. Curr Drug Deliv. 2006;3:95–113.

    Article  CAS  Google Scholar 

  63. Sionkowska A, Skopinska-Wisniewska J, Gawron M, Kozlowska J, Planecka A. Chemical and thermal cross-linking of collagen and elastin hydrolysates. Int J Biol Macromol. 2010;47:570–7.

    Article  CAS  Google Scholar 

  64. Sionkowska A, Kamińska A. Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macromol. 1999;24:337–40.

    Article  CAS  Google Scholar 

  65. Privalov PL, Tiktopulo EI, Tischenko VM. Stability and mobility of the collagen structure. J Mol Biol. 1979;127:203–16.

    Article  CAS  Google Scholar 

  66. Balian G, Bowes JH. The structure and properties of collagen. In: Ward AG, Courts A, editors. The Science and Technology of Gelatin. London: Academic Press Inc.; 1977. p. 1–27.

  67. Flory PJ, Garrett RR. Phase transitions in collagen and gelatin systems 1. J Am Chem Soc. 1958;80:4836–45.

    Article  CAS  Google Scholar 

  68. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.

    Article  CAS  Google Scholar 

  69. Urschitz J, Iobst S, Urban Z, Granda C, Souza KA, Lupp C, Schilling K, Scott I, Csiszar K, Boyd CD. A serial analysis of gene expression in sun-damaged human skin. J Invest Dermatol. 2002;119(1):3–13.

    Article  CAS  Google Scholar 

  70. Takada S, Naito S, Sonoda J, Miyauchi Y. Noninvasive in vivo measurement of natural moisturizing factor content in stratum corneum of human skin by attenuated total reflection infrared spectroscopy. Appl Spectrosc. 2012;66:26–32.

    Article  CAS  Google Scholar 

  71. Brancaleon L, Bamberg MP, Sakamaki T, Kollias N. Attenuated total reflection Fourier transform infrared spectroscopy as a possible method to investigate biophysical parameters of stratum corneum in vivo. J Invest Dermatol. 2001;116:380–6.

    Article  CAS  Google Scholar 

  72. Zhang L, Aksan A. Fourier transform infrared analysis of the thermal modification of human cornea tissue during conductive keratoplasty. Appl Spectrosc. 2010;64:23–9.

    Article  CAS  Google Scholar 

  73. Yu G, Zhang G, Flach CR, Mendelsohn R. Vibrational spectroscopy and microscopic imaging: novel approaches for comparing barrier physical properties in native and human skin equivalents. J Biomed Opt. 2013;18:061207.

    Article  Google Scholar 

  74. Lucassen GW, Van Veen GN, Jansen JA. Band analysis of hydrated human skin stratum corneum attenuated total reflectance fourier transform infrared spectra in vivo. J Biomed Opt. 1998;3:267–80.

    Article  CAS  Google Scholar 

  75. Barth A. The infrared absorption of amino acid side chains. Prog Biophys Mol Biol. 2000;74:141–73.

    Article  CAS  Google Scholar 

  76. Barth A. Infrared spectroscopy of proteins. Biochim Biophys Acta. 2007;1767:1073–101.

    Article  CAS  Google Scholar 

  77. Popescu MC, Vasile C, Craciunescu O. Structural analysis of some soluble elastins by means of FT-IR and 2D IR correlation spectroscopy. Biopolymers. 2010;93:1072–84.

    Article  CAS  Google Scholar 

  78. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures protein FTIR data analysis and band assignment. Acta Biochem Biophys Sin. 2007;39:549–59.

    Article  CAS  Google Scholar 

  79. Venyaminov S, Kalnin NN. Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers. 1990;30:1243–57.

    Article  CAS  Google Scholar 

  80. Pluot M, Baehrel B, Manfait M, Rubin S, Bonnier F, Sandt C, Vente L. Analysis of structural changes in normal and aneurismal human aortic tissues using FTIR microscopy. Biopolymers. 2007;89:160–9.

    Google Scholar 

  81. Staniszewska E, Malek K, Baranska M. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2014;118:981–6.

    Article  CAS  Google Scholar 

  82. Cheheltani R, Rosano JM, Wang B, Sabri AK, Pleshko N, Kiani MF. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction of cardiac tissue to detect collagen deposition. J Biomed Opt. 2012;17(5):056014.

    Article  Google Scholar 

  83. Camacho NP, West P, Torzilli PA, Mendelsohn R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers. 2001;62:1–8.

    Article  CAS  Google Scholar 

  84. Liu KZ, Dixon IM, Mantsch HH. Distribution of collagen deposition in cardiomyopathic hamster hearts determined by infrared microscopy. Cardiovasc Pathol. 1999;8:41–7.

    Article  CAS  Google Scholar 

  85. Zohdi V, Wood BR, Pearson JT, Bambery KR, Black MJ. Evidence of altered biochemical composition in the hearts of adult intrauterine growth-restricted rats. Eur J Nutr. 2013;52:749–58.

    Article  CAS  Google Scholar 

  86. Belbachir K, Noreen R, Gouspillou G, Petibois C. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem. 2009;395:829–37.

    Article  CAS  Google Scholar 

  87. Payne KJ, Veis A. Fourier transform IR spectroscopy of collagen and gelatin solutions: deconvolution of the amide I band for conformational studies. Biopolymers. 1988;27:1749–60.

    Article  CAS  Google Scholar 

  88. Rabotyagova OS, Cebe P, Kaplan DL. Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater Sci Eng C Mater Biol Appl. 2008;28:1420–9.

    Article  CAS  Google Scholar 

  89. Petibois C, Gouspillou G, Wehbe K, Delage J-P, Déléris G. Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal Bioanal Chem. 2006;386:1961–6.

    Article  CAS  Google Scholar 

  90. Tfayli A, Piot O, Durlach A, Bernard P, Manfait M. Discriminating nevus and melanoma on paraffin-embedded skin biopsies using FTIR microspectroscopy. Biochim Biophys Acta. 2005;1724:262–9.

    Article  CAS  Google Scholar 

  91. Tetteh J, Mader KT, Andanson JM, McAuley WJ, Lane ME, Hadgraft J, Kazarian SG, Mitchell JC. Local examination of skin diffusion using FTIR spectroscopic imaging and multivariate target factor analysis. Anal Chim Acta. 2009;642:246–56.

    Article  CAS  Google Scholar 

  92. Wang Q, Sanad W, Miller LM, Voigt A, Klingel K, Kandolf R, Stangl K, Baumann G. Infrared imaging of compositional changes in inflammatory cardiomyopathy. Vib Spectrosc. 2005;38:217–22.

    Article  CAS  Google Scholar 

  93. Krilov D, Balarin M, Kosović M, Gamulin O, Brnjas-Kraljević J. FT-IR spectroscopy of lipoproteins—a comparative study. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73:701–6.

    Article  Google Scholar 

  94. Nara M, Okazaki M, Kagi H. Infrared study of human serum very-low-density and low-density lipoproteins. Implication of esterified lipid C=O stretching bands for characterizing lipoproteins. Chem Phys Lipids. 2002;117:1–6.

    Article  CAS  Google Scholar 

  95. Bonnier F, Rubin S, Debelle L, Ventéo L, Pluot M, Baehrel B, Manfait M, Sockalingum GD. FTIR protein secondary structure analysis of human ascending aortic tissues. J Biophotonics. 2008;1:204–14.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Samouillan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Samouillan, V., Dandurand, J. et al. Thermal and vibrational characterization of human skin. J Therm Anal Calorim 127, 1143–1154 (2017). https://doi.org/10.1007/s10973-016-5384-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5384-z

Keywords

Navigation