Skip to main content
Log in

Collagen types analysis and differentiation by FTIR spectroscopy

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Abnormal formation and organization of collagen network is commonly observed in many organ pathologies, but analytical techniques able to reveal the collagen biodistribution are still lacking. In this study, Fourier-transform infrared (FTIR) spectroscopy has been used to analyze type I, III, IV, V, and VI collagens, the most important compounds of connective tissues. A robust classification of 30 FTIR spectra per collagen type could be obtained by using a combination of four spectral intervals [ν(C=O) absorption of amide I (1,700–1,600 cm−1), δ(CH2), and δ(CH3) absorptions (1,480–1,350 cm−1), ν(C–N), and δ(N–H) absorptions of amide III (1,300–1,180 cm−1), and ν(C–O) and ν(C–O–C) absorptions of carbohydrate moieties (1,100–1,005 cm−1)]. Then, a submolecular justification of this classification model was sought using a curve fitting analysis of the four spectral intervals. Results demonstrated that every spectral interval used for the classification contained highly discriminant absorption bands between all collagen types (multivariate analysis of variance, p < 0.01; Dunnett's T3 post hoc test, p < 0.05). All conditions seem thus joined to make FTIR spectroscopy and imaging major tools for implementing innovative methods in the field of molecular histology, which would be very helpful for the diagnosis of a wide range of pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FTIR:

Fourier-transform infrared

RMSE:

Root mean square error

References

  1. Brodsky B, Ramshaw JA (1997) Matrix Biol 15:545–554

    Article  CAS  Google Scholar 

  2. Lampe AK, Bushby KM (2005) J Med Genet 42:673–685

    Article  CAS  Google Scholar 

  3. Passerini L, Bernasconi P, Baggi F, Confalonieri P, Cozzi F, Cornelio F, Mantegazza R (2002) Neuromuscul Disord 12:828–835

    Article  Google Scholar 

  4. Tsukada S, Parsons CJ, Rippe RA (2006) Clin Chim Acta 364:33–60

    Article  CAS  Google Scholar 

  5. Stempien-Otero A, Plawman A, Meznarich J, Dyamenahalli T, Otsuka G, Dichek DA (2006) J Biol Chem 281:15345–15351

    Article  CAS  Google Scholar 

  6. Whitelaw SE (2003) Pediatr Nurs 29:423–426

    Google Scholar 

  7. Sifre L, Berge P, Engel E, Martin JF, Bonny JM, Listrat A, Taylor R, Culioli J (2005) J Agric Food Chem 53:8390–8399

    Article  CAS  Google Scholar 

  8. Listrat A, Lethias C, Hocquette JF, Renand G, Menissier F, Geay Y, Picard B (2000) Histochem J 32:349–356

    Article  CAS  Google Scholar 

  9. Passerieux E, Rossignol R, Chopard A, Carnino A, Marini JF, Letellier T, Delage JP (2006) J Struct Biol 154:206–216

    Article  CAS  Google Scholar 

  10. Petibois C, Deleris G (2006) Trends Biotechnol 24:455–462

    Article  CAS  Google Scholar 

  11. Cohenford MA, Rigas B (1998) Proc Natl Acad Sci USA 95:15327–15332

    Article  CAS  Google Scholar 

  12. Yano K, Ohoshima S, Gotou Y, Kumaido K, Moriguchi T, Katayama H (2000) Anal Biochem 287:218–225

    Article  CAS  Google Scholar 

  13. Wehbe K, Pinneau R, Moenner M, Deleris G, Petibois C (2008) Anal Bioanal Chem 392:129–135

    Article  CAS  Google Scholar 

  14. Levine SM, Wetzel DL (1998) Free Radic Biol Med 25:33–41

    Article  CAS  Google Scholar 

  15. Bi X, Li G, Doty SB, Camacho NP (2005) Osteoarthritis Cartilage 13:1050–1058

    Article  CAS  Google Scholar 

  16. Petibois C, Deleris G, Piccinini M, Cestelli Guidi M, Marcelli A (2009) Nat Photonics 3:179

    Article  CAS  Google Scholar 

  17. Petibois C, Gouspillou G, Wehbe K, Delage JP, Deleris G (2006) Anal Bioanal Chem 386:1961–1966

    Article  CAS  Google Scholar 

  18. Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Bone 23:187–196

    Article  CAS  Google Scholar 

  19. Crupi V, De Domenico D, Interdonato S, Majolino D, Maisano G, Migliardo P, Venuti V (2001) J Mol Struct 563–4:115–118

    Article  Google Scholar 

  20. Ward JH (1963) J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  21. Petibois C, Cazorla G, Gin H, Deleris G (2001) J Lab Clin Med 137:184–190

    Article  CAS  Google Scholar 

  22. Haris PI, Severcan F (2001) J Mol Catal B: Enzym 7:207–221

    Article  Google Scholar 

  23. Camacho NP, West P, Torzilli PA, Mendelsohn R (2001) Biopolymers 62:1–8

    Article  CAS  Google Scholar 

  24. Liu KZ, Dixon IM, Mantsch HH (1999) Cardiovasc Pathol 8:41–47

    Article  CAS  Google Scholar 

  25. Goormaghtigh E, Ruysschaert JM, Raussens V (2006) Biophys J 90:2946–2957

    Article  CAS  Google Scholar 

  26. Fabian H, Naumann D (2004) Methods 34:28–40

    Article  CAS  Google Scholar 

  27. Troullier A (2000) Nat Struct Biol 7:78–86

    Article  CAS  Google Scholar 

  28. Haris PI, Servecan F (1999) J Mol Catal B: Enzym 6:207–221

    Article  Google Scholar 

  29. Lee SM, Lin SY, Liang RC (1995) Artif Cells Blood Substit Immobil Biotechnol 23:193–205

    Article  CAS  Google Scholar 

  30. Lasch P, Haensch W, Naumann D, Diem M (2004) Biochim Biophys Acta 1688:176–186

    CAS  Google Scholar 

  31. Kalluri R (2003) Nat Rev Cancer 3:422–433

    Article  CAS  Google Scholar 

  32. Birk DE (2001) Micron 32:223–237

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are indebted to the “Association Française contre les Myopathies” (AFM) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Petibois.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Table S1–S4

Table S1: Secondary structure parameters of collagen types. All values are spectral integration results obtained from amides I and II (1,720–1,480 cm−1) spectral interval curve fitting. a = significantly different from type I collagen; b = significantly different from type III collagen; c = significantly different from type IV collagen; d = significantly different from type V collagen; e = significantly different from type VI collagen. Table S2: IR absorption bands obtained from the 1,500–1,300 cm−1 spectral interval curve fitting. See supplementary data 1 for details on statistics. Table S3: IR absorption bands obtained from the 1,350–1,150 cm−1 spectral interval curve fitting. See Table S1 for details on statistics. Table S4: IR absorption bands obtained from the 1,130–950 cm−1 spectral interval curve fitting. See Table S1 for details on statistics. (PDF 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belbachir, K., Noreen, R., Gouspillou, G. et al. Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 395, 829–837 (2009). https://doi.org/10.1007/s00216-009-3019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3019-y

Keywords

Navigation