Skip to main content
Log in

Glass Transition and Dynamics in Lysozyme–Water Mixtures Over Wide Ranges of Composition

  • SPECIAL ISSUE ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Differential scanning calorimetry (DSC) and two dielectric techniques, broadband dielectric relaxation spectroscopy and thermally stimulated depolarization currents (TSDC), were employed to study glass transition and water and protein dynamics in mixtures of water and a globular protein, lysozyme, in wide ranges of water content, both solutions, and hydrated solid samples. In addition, water equilibrium sorption isotherms (ESI) measurements were performed at room temperature. The main objective was to correlate results by different techniques to each other and to determine critical water contents for various processes. From ESI measurements the content of water directly bound to primary hydration sites was determined to 0.088 (grams of water per grams of dry protein), corresponding to 71 water molecules per protein molecule, and that where clustering becomes significant to about 0.25. Crystallization and melting events of water were first observed at water contents 0.270 and 0.218, respectively, and the amount of uncrystallized water was found to increase with increasing water content. Two populations of ice crystals were observed by DSC, primary and bulk ice crystals, which give rise to two separate relaxations in dielectric measurements. In addition, the relaxation of uncrystallized water was observed, superimposed on a local relaxation of polar groups on the protein surface. The glass transition temperature, determined by DSC and TSDC in rather good agreement to each other, was found to decrease significantly with increasing water content and to stabilize at about −90 °C for water contents higher than about 0.25. This is a novel result of this study with potential impact on cryoprotection and pharmaceutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I.D. Kuntz, W. Kauzman, Advances in Protein Chemistry 28, 239 (1974)

    Article  CAS  Google Scholar 

  2. E.H. Grant, R.J. Sheppard, G.P. South, Dielectric behavior of biological molecules in solution (Clarendon, Oxford, 1978)

    Google Scholar 

  3. J.A. Rupley, G. Careri, Advances in Protein Chemistry 41, 37 (1991)

    Article  CAS  Google Scholar 

  4. R.B. Gregory, Protein-solvent interactions (Marcel Dekker, New York, 1995)

    Google Scholar 

  5. D. Ringe, G.A. Petsko, Biophysical Chemistry 105, 667 (2003)

    Article  CAS  Google Scholar 

  6. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, R.D. Young, Proceedings of the National Academy of Science 101, 14408 (2004)

    Article  CAS  Google Scholar 

  7. S. Khododadadi, A. Malkovskiy, A. Kisliuk, A.P. Sokolov, Biochemistry & Biophysics Acta 1804, 15 (2010)

    Google Scholar 

  8. W. Doster, S. Busch, A.M. Gaspar, M.-S. Appavu, J. Wuttke, H. Scheer, Physical Review Letters 104, 098101 (2010)

    Article  CAS  Google Scholar 

  9. F. Kremer, A. Schoenhals (eds.), Broadband dielectric spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  10. J. van Turnhout, Electrets, in Topics in applied physics, vol. 33, ed. by G.M. Sessler (Springer, Berlin, 1980), pp. 81–215

    Google Scholar 

  11. Y. Miyazaki, T. Matsuo, H. Suga, The Journal of Physical Chemistry. B 104, 8044 (2000)

    Article  CAS  Google Scholar 

  12. A. Kyritsis, P. Pissis, J.L. Gomez Ribelles, M. Monleon Pradas, Polymer Gels and Networks 3, 445 (1995)

    Article  CAS  Google Scholar 

  13. K. Kawai, T. Suzuki, M. Oguni, Biophysical Journal 90, 3732 (2006)

    Article  CAS  Google Scholar 

  14. K.L. Ngai, S. Capaccioli, N. Shinyashiki, The Journal of Physical Chemistry. B 112, 3826 (2008)

    Article  CAS  Google Scholar 

  15. J. Mijović, Y. Bian, R.A. Gross, B. Chen, Macromolecules 38, 10812 (2005)

    Article  Google Scholar 

  16. J. Swenson, H. Jansson, J. Hedström, R. Bergman, Journal of Physics: Condensed Matter 19, 205109 (2007)

    Article  Google Scholar 

  17. T.J. Buchanan, G.H. Haggis, J.B. Hasted, B.G. Robinson, Proc Roy Soc (London) A213, 379 (1952)

    Google Scholar 

  18. N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, P. Pissis, Journal of Physics: Condensed Matter 19, 205113 (2007)

    Article  Google Scholar 

  19. S. Cappacioli, K.L. Ngai, N. Shinyashiki, The Journal of Physical Chemistry. B 111, 8197 (2007)

    Article  Google Scholar 

  20. J. Swenson, J. Texeira, The Journal of Chemical Physics 132, 014508 (2010)

    Article  Google Scholar 

  21. S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Physical Review Letters 93, 245702 (2004)

    Article  Google Scholar 

  22. A. Anagnostopoulou-Konsta, P. Pissis, Journal of Physics. D. Applied Physics 20, 1168 (1987)

    Article  CAS  Google Scholar 

  23. P. Pissis, Journal of Molecular Liquids 41, 271 (1989)

    Article  CAS  Google Scholar 

  24. V. Samouillan, C. Andre, J. Dandurand, C. Lacabanne, Biomacromolecules 5, 958 (2004)

    Article  CAS  Google Scholar 

  25. S. Khododadadi, S. Pawlus, A.P. Sokolov, The Journal of Physical Chemistry. B 112, 14273 (2008)

    Article  Google Scholar 

  26. C. Gainaru, A. Fillmer, R. Boehmer, The Journal of Physical Chemistry. B 113, 12628 (2009)

    Article  CAS  Google Scholar 

  27. L. Greenspan, Journal of Research of the National Bureau of Standards. Section A. Physics and Chemistry 81A, 89 (1977)

    Google Scholar 

  28. E.O. Timmermann, Journal of the Chemical Society. Faraday Transactions 1(85), 1631 (1989)

    Google Scholar 

  29. J.A. Dean, Lange’s handbook of chemistry (McGraw-Hill, New York, 1999), p. 6.115

    Google Scholar 

  30. P. Pissis, A. Anagnostopoulou-Konsta, L. Apekis, D. Daoukaki-Diamanti, C. Christodoulides, Journal of Non-Crystalline Solids 131–133, 1174 (1991)

    Article  Google Scholar 

  31. P. Pissis, G. Boudouris, J.C. Garson, J.L. Leveque, Zeitschrift fuÉr Naturforschung 36a, 321 (1981)

    CAS  Google Scholar 

  32. P. Pissis, L. Apekis, C. Christodoulides, G. Boudouris, Zeitschrift fuÉr Naturforschung 37a, 1000 (1982)

    CAS  Google Scholar 

  33. D. Daoukaki-Diamanti, P. Pissis, G. Boudouris, Chemical Physics 91, 315 (1984)

    Article  CAS  Google Scholar 

  34. M. Wuebbenhorst, J. van Turnhout, Journal of Non-Crystalline Solids 305, 40 (2002)

    Article  Google Scholar 

  35. L.N. Bell, M.J. Hagemann, J.M. Bauer, Biopolymers 35, 201 (1995)

    Article  CAS  Google Scholar 

  36. G. Careri, A. Giansanti, E. Gratton, Biopolymers 18, 1187 (1979)

    Article  CAS  Google Scholar 

  37. K. Hofer, E. Mayer, Gp Johari, The Journal of Physical Chemistry 94, 2689 (1990)

    Article  CAS  Google Scholar 

  38. J. Rault, A. Lucas, R. Neffati, M. Monleon Pradas, Macromolecules 30, 7866 (1997)

    Article  CAS  Google Scholar 

  39. M. Salmeron Sanchez, M. Monleon Pradas, J.L. Gomez Ribelles, Journal of Non-Crystalline Solids 307–310, 750 (2002)

    Article  Google Scholar 

  40. P. Pissis, Journal of Physics. D. Applied Physics 18, 1897 (1985)

    Article  CAS  Google Scholar 

  41. S. Ratkovic, P. Pissis, Journal of Materials Science 32, 3061 (1997)

    Article  CAS  Google Scholar 

  42. P. Pissis, Journal of Experimental Botany 41, 677 (1990)

    Article  Google Scholar 

  43. H. Sugimoto, T. Miki, K. Κanayama, M. Norimoto, Journal of Non-Crystalline Solids 354, 3220 (2008)

    Article  CAS  Google Scholar 

  44. G. Franzese, K. Stokely, X-q Chu, P. Kumar, M.G. Mazza, S.-H. Chen, H. Eugene Stanley, Journal of Physics: Condensed Matter 20, 494210 (2008)

    Article  Google Scholar 

  45. Mazza MG, Stokely K, Pagnotta SE, Bruni F, Eugene Stanley H, Franzese G. Avalable at: arXiv:0997v1 [cond-mat.soft]. Accessed 10 July 2009

  46. N. Shinyashiki, W. Yamamoto, A. Yokoyama et al., The Journal of Physical Chemistry. B 113, 14448 (2009)

    Article  CAS  Google Scholar 

  47. K. Fukao, Y. Miyamoto, Physical Review Letters 79, 4613 (1997)

    Article  CAS  Google Scholar 

  48. T.G. Fox, Bulletin of the American Physical Society 1, 123 (1956)

    CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under a Marie Curie International Research Staff Exchange Scheme, Grant Agreement No PIRSES-GA-2008-230790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polycarpos Pissis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panagopoulou, A., Kyritsis, A., Aravantinou, AM. et al. Glass Transition and Dynamics in Lysozyme–Water Mixtures Over Wide Ranges of Composition. Food Biophysics 6, 199–209 (2011). https://doi.org/10.1007/s11483-010-9201-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-010-9201-0

Keywords

Navigation