Skip to main content

Physical Methods to Measure Stratum Corneum Water Content In Vivo

  • Living reference work entry
  • First Online:
Agache’s Measuring the Skin

Abstract

On living skin, the Stratum Corneum (S.C.) water content is essentially measured through non invasive physical methods. This chapter reviews most of the proposed techniques, some of them being now widely used for investigation and screening in the Dermo-Cosmetology field. It opens with a short survey of S.C. water bounding mechanisms, leading to a presentation of thermal methods, based on heat diffusivity measurements. The next part deals with skin mechanical properties, such as elasticity and viscosity, which have been widely related to S.C. hydration studies. Electrical methods follow, of main importance since they have originated many of the small commercial instruments used for skin “moisturization” determinations. Though working all on the same Physical basis (impedance measurements), the investigators have played with several parameters (frequency, geometry of the probe, shape of the applied field) to find the “best” compromise. Beside these indirect methods, experiments targeting directly the water molecule have been carried out. Based on the optical properties of the water molecule, they appear very promising, since the associated instrumentation is getting out from sophisticated laboratories to become available on the market (still at rather high prices). Infra-red reflectometry, Raman scattering and coherent tomography belong to this class of techniques, which in addition allow the water gradient determination across S.C. and epidermis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aframian VM, Dikstein S. Levarometry. In: Serup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. London: CRC Press; 1995a.

    Google Scholar 

  • Aframian VM, Dikstein S. Indentometry. In: Serup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. London: CRC Press; 1995b.

    Google Scholar 

  • Agache P, Monneur C, Léveque JL, de Rigal J. Mechanical properties and Young modulus of human skin in vivo. Arch Dcrmat Res. 1980;269:221–32.

    Article  CAS  Google Scholar 

  • Arnaud et al. A micro-thermal diffusion sensor for non invasive skin characterization. Sensors and Actuators. 1994;41-42:240–3.

    Google Scholar 

  • Attas M, Hewko M, Payette J, Posthumus T, Sowa M, Mantsch H. Visualization of cutaneous Hemoglobin oxygenation and skin hydration using near-infrared spectroscopic imaging. Skin Res Technol. 2001;7(4):238–45.

    Article  CAS  PubMed  Google Scholar 

  • Aubert L, Anthoine P, de Rigal J, Lévéque JL. An in vivo assessment of the biomechanical properties of human skin modifications under cosmetic product. Int J Cosmet Sci. 1985a;7:51–9.

    Article  CAS  PubMed  Google Scholar 

  • Aubert L, Anthoine P, de Rigal J, Lévéque JL. An in vivo assessment of the biomechanical properties of human skin modifications under the influence of cosmetic products. Int J Cosmet Sci. 1985b;7:51–9.

    Article  CAS  PubMed  Google Scholar 

  • Baesso ML, Shen J, Snook RD. Laser-induced photo-acoustic signal phase study of stratum comeum and epidermis. Analyst. 1994a;119:561–2.

    Article  CAS  PubMed  Google Scholar 

  • Baesso ML, Snook RD, Andrew JJ. Fourier transform IR photoacoustic spectroscopy to study the penetration of substances through skin. J Phys. 1994b;4:449–51.

    CAS  Google Scholar 

  • Balageas DL. Characterization of living tissues from the measurement of thermal effusivity. Innov Tech Biol Med. 1991;12:145–53.

    Google Scholar 

  • Balageas DL, Krapez JC, Cielo P. Pulsed photothermal modeling of layered materials. J Appl Phys. 1986;59:348–57.

    Article  CAS  Google Scholar 

  • Bamber JC, Tristam M. Diagnostic ultrasound. In: Webb S, editor. The physics of medical imaging. Bristol: Adam Hilger; 1990.

    Google Scholar 

  • Barel AO, Clarys P. Measurement of epidermal capacitance. In: Serup J, editor. Handbook of non-invasive methods and the skin. London: CRC Press; 1995. p. 165–70.

    Google Scholar 

  • Barel AO, Clarys P, Wessels B, de Romsee A. Noninvasive electrical measurement for evaluating the water content of the horny layer: comparison between the capacitance and the conductance measurements. In: Scott RC, Guy RH, Hadgraft J, editors. Prediction of percutaneous penetration – methods, measurements, modelling. London: IBC Technical Services; 1991. p. 238.

    Google Scholar 

  • Barry BW. Mode of action of penetration enhancers in human skin. J Control Release. 1987;6:85–97.

    Article  CAS  Google Scholar 

  • Behl CR, Barret M. Hydration and percutaneous absorption. II: influence of hydration on water and alcanol permeation through Swiss mouse skin., comparison with hairless mouse. J Pharm Sci. 1981;70:l212–5.

    Google Scholar 

  • Bernengo JC, Hanss M. Four electrode, very low frequency impedance comparator for ionic solutions. Rev Sci Instr. 1976;47:505–8.

    Article  CAS  Google Scholar 

  • Bernengo JC, Gasquez A, Falson-Rieg F. Photoacoustics as a tool for cutaneous permeation studies. High Temp High Pres. 1998;30:619–24.

    Article  CAS  Google Scholar 

  • Bindra RMS, Imhof, J Andrew J, Eclcston GM, Cummins PG (1994) Opto thermal measurements for non-invasive, non-occlusive monitoring of in vivo skin condition. IF SCC International Congress, Venice; 1994 Sept

    Google Scholar 

  • Blank IH. Factors which influence the water content of the S.C. J Invest Dermatol. 1952;181:433–40.

    Article  Google Scholar 

  • Blank IH, Moloney J, Emslie AG, Simon I, Apt C. The diffusion of water across the stratum comeum as a function of its water content. J Invest Dermatol. 1984;82:l88–94.

    Article  Google Scholar 

  • Blichman CW, Serup J. Assessment of skin moisture. Acta Dermatol Venereol (Stockholm). 1988;68:284–90.

    Google Scholar 

  • Campbell SD, Kraing KK, Schibli EG, Momii ST. Hydratation characteristics and electrical resistivity of stratum corneum using a noninvasive four-point electrode method. J Invest Dermatol. 1977;69:290–5.

    Article  CAS  PubMed  Google Scholar 

  • Campbell SD, Yee SS, Afromowitz MA. Applications of photoacoustic spectroscopy to problems in dermatology research. IEEE Trans Biomed Eng. 1979;26:220–7.

    Article  CAS  PubMed  Google Scholar 

  • Caspers PJ, Lucassen GV, Carter EA, Bruining HA, Puppels GW. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol. 2001;1l6:434–42.

    Article  Google Scholar 

  • Challoner AVJ. Accurate measurement of skin blood flow by a thermal conductance method. Med Biol Eng. 1975;13:196–201.

    Article  CAS  PubMed  Google Scholar 

  • Christensen MS, Hargens CW, Nacht S, Gaus EH. Viseoelastic properties of intact humanskin, instrumentation, hydration effect and the contribution of the stratum comeum. J Invest Dermatol. 1977;69:282–6.

    Article  CAS  PubMed  Google Scholar 

  • Chrit L, Hadjur C, Morel S, Sockalingum G, Lebourdon G, Leroy F, Manfait M. In vivo chemical Investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt. 2005;10:44007.

    Article  CAS  PubMed  Google Scholar 

  • Clar EJ, Her CP, Sturelle CG. Skin impedance and moisturization. J Soc Cosmet Chem. 1975;26:337–53.

    Google Scholar 

  • Clarys P, Clijsen R, Taeymans J, Barel AO. Hydration measurements of the S.C.: comparison between the capacitance method (digital version of The Corneometer CM825) and the impedance method (Skicon-200EX). Skin Res Technol. 2012;18(3):316–23.

    Google Scholar 

  • Comaish S. Infrared studies of human skin in vivo by multiple internal reflection. Br J Dermatol. 1968;80:522–8.

    Article  CAS  PubMed  Google Scholar 

  • Cooper EP, Missel PJ, Hannon DP, Albright GB. Mechanical properties of dry, normal and glycerol-treated skin as measured by gas bearing electrodynamometer. J Soc Cosmet Chem. 1985;36:335.

    Google Scholar 

  • De Rigal J. In vivo assessment of skin ageing and photoaging. A multiparametric approach. 20th anniversary symposium, International society for bioengineering and the skin. Miami; 1996 Feb 15–17.

    Google Scholar 

  • de Rigal J, Losch M, Bazin R, Camus C, Sturelle C, Descamp V, Leveque JL. Near infra red spectroscopy: a new approach to the characterisation of dry skin. J Soc Cosmet Chem. 1993;44:197–209.

    Google Scholar 

  • Diakate L, de Rigal J, Bemengo JC, Lévéque JL. Dielectric properties of skin at high frequencies by means of time domain reflectometry: a new approach to hydratation process. 10th international symposium on bioengineering and the skin. Cincinnati, Ohio; 1994 June.

    Google Scholar 

  • Dikstein S, Bercovici PG. Measurement of skin surface capacitance at 16 Hz and at other frequencies. Bioeng Skin. 1985;1:357.

    Google Scholar 

  • Dikstein S, Hartzshtark A. What does low pressure indentometry measure? Arztliche Cosmetol. 1983;13:327.

    Google Scholar 

  • Dittmar A. Skin thermal conductivity: a reliable index of skin blood flow and hydratation. In: Lévéqne JL, editor. Cutaneous investigation in health and disease. New York: Marcel Dekker; 1988. p. 323–58.

    Google Scholar 

  • Djeldjellani M. Mise au point d’un applicateur destiné a la mesure des propriétés diélectriques de la peau par TDR. Ph.D. dissertation, Université de Besancon; 1989.

    Google Scholar 

  • Emtestam L, Ollmar S. Electric impedance index in human skin: measurement after occlusion in five anatomical regions and in mild irritant dermatitis. Contact Dermatitis. 1993;28:104–8.

    Article  CAS  PubMed  Google Scholar 

  • Ferris CD. Four electrode null techniques for biological impedance work. Rev Sci Instrum. 1963;23:109–15.

    Article  Google Scholar 

  • Fluhr JW, Gloor M, Lazzerini S, Kleesz P, Grieshaber P, Berardesca E. Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, DermaLab). Part II In vivo. Skin Res Technol. 1999;5(3):171–8.

    Article  Google Scholar 

  • Geladi P, MacDougall P. Linearization and scatter correction for NIR spectra of meat. Appl Spectrosc. 1985;39(3):491–500.

    Article  Google Scholar 

  • Giese K, Kolmel K. A photoacoustic hydration study of human stratum corneum. J Phys (Paris). 1983;44(C6-373):C6–378.

    Google Scholar 

  • Gloor M, Willebrandt U, Thomer G, Kupferschmid W. Water content of the horny layer and skin surface lipids. Arch Dermatol Res. 1980;268:221–3.

    Article  CAS  PubMed  Google Scholar 

  • Gloor M, Hirch G, Willebrandt U. On the use of infrared spectroscopy for in vivo measurement of water content of the horny layer after application of dermatological ointments. Arch Dermatol Res. 1981a;271:296–302.

    Google Scholar 

  • Gloor M, Hirch G, Willebrandt U. On the use of infrared spectroscopy for in vivo measurement of water content of the homy layer after application of dennatological ointments. Arch Dermatol Res. 1981b;271:305–13.

    Article  CAS  PubMed  Google Scholar 

  • Golden GM, Guzek DB, Harris RR, Mackie JE, Potts RO. Lipid thermotropic transitions in human stratum corneum. J Invest Dermatol. 1986;86:255–9.

    Article  CAS  PubMed  Google Scholar 

  • Golden GM, Guzek DB, Kennedy AH, Mackie JE, Potts RO. Stratum comeum lipid phase transitions and water barrier properties. Biochemistry. 1987;26:2382–8.

    Article  CAS  PubMed  Google Scholar 

  • Goodman M, Barry BW. Action of penetration enhancers on human stratum comeum as assessed by Differential scanning calorimetry. In: Bronaugh RL, Maibach HI, editors. Percutaneous absorption. New York: Marcel Dekker; 1989. p. 567–93.

    Google Scholar 

  • Grahame R. A method for measuring human skin elasticity in vivo with observation of the effects of age, sex, and pregnancy. Clin Sci. 1970;39:223–38.

    Article  CAS  PubMed  Google Scholar 

  • Gunner CW, Hutton WC, Burlin TE. The mechanical properties of skin in vivo. A portable hand held extensometer. Br J Dermatol. 1979;100:161–3.

    Article  CAS  PubMed  Google Scholar 

  • Guo X, ImhofRE, de Rigal J (2001) Spectroscopic study of water-keratin interactions in Stratum Corneum. In: Proceedings of 11th international conference of photothermal and photoacoustic phenomena, Kyoto, Japan; 2000 June 25–29.

    Google Scholar 

  • Guy M, Bemengo JC. Designing a differential cell for in vivo photoacoustic measurements of skin absorbance. Can J Phys. 1986;64:1142–5.

    Article  CAS  Google Scholar 

  • Hansen JR, Yellin W. NMR and Infra-red spectroscopic studies of stratum comeum hydration. In: Jellinek E, editor. Water structure and the water polymer interface. New York: Plenum Press; 1972.

    Google Scholar 

  • Hargens CW. The gas bearing electrodynarnometer applied to measuring mechanical changes in skin and other tissues. In: Marks R, Payne P, editors. Bioengineering and the skin. Lancaster: MTP Press; 1981. p. 113–22.

    Chapter  Google Scholar 

  • Hendler E, Crosbie R, Hardy JD. Measurement of heating of the skin during exposure to infrared radiation. J Appl Physiol. 1958;12:177.

    CAS  PubMed  Google Scholar 

  • Hensel H, Brandt S. Plate element for recording of cutaneous blood flow. Pfliigers Archiv Eur J Phys. 1977;368:l65–7.

    Google Scholar 

  • Horii I, Nakayama Y, Obata M, Tagami H. Stratum corneum hydratation and amino acid content in Xerotic skin. Br J Dermatol. 1989;121:587.

    Article  CAS  PubMed  Google Scholar 

  • Imhof RE, Whitters CJ, Birch DJS. Opto-thermal in vivo monitoring of structural breakdown of an emulsion sunscreen on skin. Clin Mater. 1990;5:271–8.

    Article  CAS  Google Scholar 

  • Inoue T, Tsujii K, Okamoto K, Toda K. Differential scanning calorimetric studies on the melting behaviour of water in stratum comeum. J Invest Dermatol. 1986;86:689–93.

    Article  CAS  PubMed  Google Scholar 

  • Isaksson T, Mass T. The effect of multiplicative scatter correction and linearity improvement in NIR spectroscopy. Appl Spectrosc. 1988;42:1273–84.

    Article  CAS  Google Scholar 

  • Jacques SL. A linear measurement of the water content of the stratum comeum of human skin using a microwave probe. IEEE Eng Med Biol Soc Conf 180;1979.

    Google Scholar 

  • Kalia YN, Pirot F, Guy RH. Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum comeum in vivo. Biophys J. 1996;71:2692–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenji Iino K, Maruo K, Arimoto M, Hyodo K, Nakatani T, Yamada Y. Monte Carlo simulation of near infrared reflectance spectroscopy in the wavelength range from 1000 nm to 1900 nm. Opt Rev. 2003;10(6):600–6.

    Article  Google Scholar 

  • Khan ZU, Kellaway IW. Differential scanning calorimetry of DMSO treated human stratum comeum. Int J Pharm. 1989;55:129–34.

    Article  CAS  Google Scholar 

  • Kilpatrick-Liverman L, Kazmi P, Wolff E, Polefka TG. The use of near-infrared spectroscopy in skin care applications. Skin Res Technol. 2006;12(3):162–9.

    Article  PubMed  Google Scholar 

  • Klimisch HM, Chandrag G. Use of Fourier transform infrared spectroscopy with attenuated total reflectance for in vivo quantification of polydimethylsiloxanes on human skin. J Soc Cosmet Chem. 1986;37:73–87.

    CAS  Google Scholar 

  • Knutson K, Potts RO, Guzek DB, Golden GM, Mackie JE, Lambert WJ, Higuchi W. Macro- and molecular physical-chemical considerations in understanding drug transport in the Stratum Corneum. J Controll Release. 1985;2:67–87.

    Article  CAS  Google Scholar 

  • Knuttel A, Boehlau-Godau M. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J Biomed Opt. 2000;5:83–9.

    Article  CAS  PubMed  Google Scholar 

  • Koelmel K, Mercer P. Determination of the moisture of the horny layer by means of infrared reflection at three different wavelengths. Arch Dermatol Res. 1980;268:206.

    Google Scholar 

  • Koyama J, Nakanishi J, Masuda Y, Sato J, Nomura J, Suzuki, Y, Nakayama Y. The mechanism of desquamation in the stratum comeum and its relevance to skin care. IFSCC Congress, Sydney; 1996 Oct.

    Google Scholar 

  • Lefevre J. Recherches sur la conductibilité de la peau de 1’organisme vivant et sur ses variations en fonction de la temperature extérieure. J Phys Theor Appl, Paris. 1901;3:380–8.

    Article  Google Scholar 

  • Lévéque JL, de Rigal J. Impedance methods for studying skin moisturisation. J Soc Cosmet Chem. 1983;34:419.

    Google Scholar 

  • Lévéque JL, de Rigal J. In vivo measurement of the stratum corneum elasticity. Bioeng Skin. 1985;1:13–23.

    Google Scholar 

  • Lévéque JL, Escoubez M, Rasseneur L. Water-keratin interaction in human stratum comeum. Bioeng Skin. 1987a;3:227–42.

    Google Scholar 

  • Lévéque JL, Grove G, de Rigal J, Corcuff P, Kligman AM, St Leger D. Biophysical characterisation of dry facial skin. J Soc Cosmet Chem. 1987b;82:171–7.

    Google Scholar 

  • Leveque JL, Ribaud C, Garson JC. Caractérisation biophysique du stratum coméum. Relation entre sa structure et ses propriétés. Path Biol. 1992;40:95–108.

    CAS  Google Scholar 

  • Maes T, Martens H. Principal components regression in NIR analysis: viewpoints, background details and selection of components. J Chemom. 1988;2:155–67.

    Article  Google Scholar 

  • Martin KA. Qualitative interpretation of NIR reflectance measurements to determine moisturisation in skin. In: Making light work. Advances in NIR spectroscopy. Weinheim: VCH; 1992. p. 627–32.

    Google Scholar 

  • Martin KA. Direct measurement of moisture in skin by NIR spectroscopy. J Soc Cosmet Chem. 1993;44:249–61.

    Google Scholar 

  • Martinsen OG, Grimnes S, Karlsen I. An instrument for the evaluation of skin hydration by 100 kHz electrical admittance measurements. Innov Tech Biol Med. 1993;14:588–96.

    Google Scholar 

  • Mass D, Short J, Turek A, Reinstein JA. In vivo measuring of skin softness using the gas bearing electrodynamometer. Int J Cosmet Sci. 1983;5:189–200.

    Article  Google Scholar 

  • Masuda K, Nishikawa M, Ichijo B. New methods of measuring capacitance and resistance of very high loss materials at high frequencies. IEEE Trans Instrum Meas. 1980;29:28.

    Article  Google Scholar 

  • Moseley H, English JSC, Coghill GM, Mackie RM. Assessment and use of a new skin hygrometer. Bioeng Skin. 1985;1:177.

    Google Scholar 

  • Murray BC, Wickett RR. Sensitivity of cutometer data to stratum corneum hydration level. A preliminary study. Skin Res Technol. 1996;2:167–72.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa N, Matsumoto M, Singo S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010;16:137–41.

    Article  PubMed  Google Scholar 

  • Norris KH, Hart JR. Direct spectrometric determination of moisture in seeds. Proceedings of the 1963 international symposium on humidity and moisture, principles and methods of measuring moisture. In: Liquids and solids. 4th ed. New York: Reinhold; 1965. p. 19–25.

    Google Scholar 

  • Osborne KA, Fearn T. Near infrared spectroscopy. In: Food analysis. New York: Longman Scientific and Technology; 1986. p. 49–51.

    Google Scholar 

  • Patel CKN, Tam AC. Pulsed optoacoustic spectroscopy of condensed matter. Rev Mod Phys. 1981;53:517–49.

    Article  CAS  Google Scholar 

  • Pichon E, de Rigal J, Lévéque JL. In vivo rheological study of the torsional characteristics of the skin. 8th international symposium on bioengineering and the skin, STRESA, Italy; 1990 June 13–16.

    Google Scholar 

  • Piérard GE. Caractérisation des peaux seches, la biométrologie complète la clinique. Cosmétologie. 1997;14:48–51.

    Google Scholar 

  • Pines E, Cunningham T. Dermatological photoacoustic spectroscopy. In: Marks R, Paynes PA, editors. Bioengineering and the skin. Lancaster: MTP Press; 1981. p. 283–90.

    Chapter  Google Scholar 

  • Poppendieck HF, Randall R, Breeden JA, Chambers JE, Murphy JR. Thermal conductivity measurements and predictions for biological fluids and tissues. Cryobiology. 1966;3:3l8–27.

    Google Scholar 

  • Potts RO. In vivo measurement of water content of the stratum comeum using infrared spectroscopy: a review. Cosmet Toiletries. 1985;100:27–31.

    Google Scholar 

  • Potts RO, Buras EM. In vivo changes in the dynamic viscosity of human stratum comeum as a function of age and ambient moisture. J Soc Cosmet Chem. 1985;136:169–76.

    Google Scholar 

  • Potts RO, Buras EM, Chrisman DA. The dynamic mechanical properties of human skin in vivo. J Biomech. 1980;16:365–72.

    Article  Google Scholar 

  • Potts RO, Guzek DB, Harris RR, Mackie JE. A noninvasive in vivo technique to quantitatively measure water concentration of the stratum corneum, using attenuated total-reflectance infrared spectroscopy. Arch Dennatol Res. 1985;277:489–95.

    Article  CAS  Google Scholar 

  • Poulet P. Spectroscopie photoacoustique et sciences biomedicales. Ph.D. disseration, University of Strasbourg, France; 1985.

    Google Scholar 

  • Poulet P, Chambron J. Conception and realisation of a photoacoustic detector for “in situ” spectroscopy. J Photoacoustics. 1982;1:329–46.

    Google Scholar 

  • Poulet P, Chambron J. In vivo photoacoustic spectroscopy of the skin. J Phys (Paris). 1983;44:C6–413.

    Article  Google Scholar 

  • Querleux B, Richard S, Bittoun J, Jolivet J, Idy-Peretti I, Bazin R, de Lachariere O, Lévéque JL. In vivo hydration profile in skin layer by high resolution magnetic resonance imaging. Skin Pharmacol. 1994;7:2l0–6.

    Google Scholar 

  • Randall Wicket R, Murray BC. Comparison of cutometer and DTM for skin elasticity measurements. 20th anniversary symposium, International society for bioengineering and the skin, Miami; 1997 Feb 15–17.

    Google Scholar 

  • Rawling AV, Hope J, Rogers J, Mayo AM, Scott l. Mechanism of desquamation: new insights into dry flaky skin conditions. 17th IFSCC international congress, Yokohama; 1992 Oct 13–16.

    Google Scholar 

  • Rawling A, Harding C, Wakinson A, Bank J, Ackerman C, Sabin R. The effect of glycerol and humidity on desmosome degradation in stratum comeum. Arch Dermatol Res. 1995;287:457–64.

    Article  Google Scholar 

  • Rompe PCB, dos Anjos FH, Mansanares AM, da Silva EC, Acosta-Avalos D, Barja PR. Characterization of human skin through photoacoustic spectroscopy. J Phys IV (Paris). 2005;125:785–7.

    CAS  Google Scholar 

  • Rosencwaig A, Gersho A. Theory of the photoacoustic effect with solids. J Appl Phys. 1976;47:64–9.

    Article  Google Scholar 

  • Rosencweig A, Pines E. Stratum comeum studies with photoacoustie spectroscopy. J Invest Dermatol. 1977;75:500–7.

    Google Scholar 

  • Salter DC. Skin mechanics measured in vivo using torsion, a new and accurate model more sensitive to age, sex and moisturising treatment. J Soc Cosmet Chem. 1993;44:197–209.

    Google Scholar 

  • Salter DC, Hodgson RJ, Hall LD, Carpenter TA, Ablett S. Moisturisation processes in living human skin studied by magnetic resonance imaging. 17th IFSCC lntemational Congress, Yokohama, 1992 Oct 13–16.

    Google Scholar 

  • Schade H. Die Elasticitatsfunktion des Bindegewebes und die Intravitale Messung ihrer Storungen. Z Exp Pathol Ther. 1912;11:369–99.

    Article  Google Scholar 

  • Schneider M, Hansen WG. Crystal effect on penetration depth in attenuated total reflectance Fourier transform infra-red study on human skin. Microchim Acta [Suppl]. 1997;14:677–8.

    Google Scholar 

  • Schwan HP. Dielectric properties of living tissues. Adv Biol Med Phys. 1957;5:147–63.

    Article  CAS  PubMed  Google Scholar 

  • Serban GP, Henry SM, Cotty VF, Marcus AD. In vivo evaluation of skin lotions by electrical capacitance and conductance. J Soc Cosmet Chem. 1981;32:421–35.

    Google Scholar 

  • Serban GP, Henry SM, Cotty VF, Cohen GL, Riveley JA. Electrometric technique for the in vivo assessment of skin dryness, and the effect of chronic treatment with a lotion on the water barrier function of dry skin. J Soc Cosmet Chem. 1983;34:383–93.

    CAS  Google Scholar 

  • Simon I, Emslie AG, Apt CM, Blank IH, Anderson RR. Determination in vivo of water concentration profile in human stratum corneum by a photoacoustic method. In: Marks R, Paynes PA, editors. Bioengineering and the skin. Lancaster: MTP Press; 1981. p. 187–95.

    Chapter  Google Scholar 

  • Starzyk F. Parametrisation of interdigit comb capacitor for dielectric impedance spectroscopy. Arch Mater Sci Eng. 2008;34(1):31–4.

    Google Scholar 

  • Stolwijk JA, Hardy J. Skin and subcutaneous temperature changes during exposure to intense thermal radiation. J Appl Physiol. 1965;20:1006–13.

    CAS  PubMed  Google Scholar 

  • Tagami H. Impedance measurements. In: Lévéque JL, editor. Cutaneous investigation in health and disease. New York: Marcel Dekker; 1988. p. 79–111.

    Google Scholar 

  • Tagami H. Measurements of electrical conductance and impedance. In: Serup J, editor. Handbook of non-invasive methods and the skin. London: CRC Press; 1995. p. 159–64.

    Google Scholar 

  • Tagami H, Yoshikuni K. Interrelationship between water barrier and reservoir functions of pathologic stratum comeum. Arch Dermatol. 1985;121:642–5.

    Article  CAS  PubMed  Google Scholar 

  • Tagami H, Oki M, Iwatsuki K, Kanamaru Y, Yamada M, Ichijo B. Evaluation of skin surface hydration in vivo by electrical measurement. J Invest Dermatol. 1980;75(500–5):07.

    Google Scholar 

  • Takamoto R, Yamamoto S, Namba R, Takamatsu T, Matsuoka M, Sawada T. In vivo percutaneous absorptiometry by a laser photoacoustic method using a novel open-ended cell, combined with light guide. Anal Chem. 1994;66:2267–71.

    Article  CAS  Google Scholar 

  • Tosti A, Giovanni C, Fazzini ML, Villardita S. A ballistometer for the study of the plasto-elastic properties of the skin. J Invest Dermatol. 1977;69:282–6.

    Article  Google Scholar 

  • van Duzec BF. Thermal analysis of human Stratum Corneum. J Invest Dermatol. 1975;65:404–8.

    Article  Google Scholar 

  • Vlashloom DC. Skin elasticity. Ph.D. thesis. Holland: University of Utrech; 1967.

    Google Scholar 

  • Walkley K. Bound water in stratum comeum measured by differential scanning calorimetry. J Invest Dermatol. 1972;59:225–7.

    Article  CAS  PubMed  Google Scholar 

  • Walling PL, Dabney JM. Moisture in skin by NIR spectroscopy. J Soc Cosmet Chem. 1989;40:151–75.

    CAS  Google Scholar 

  • Warner RR, Myers MC, Taylor DA. Electron probe analysis of human skin: determination of the water concentration profile. J Invest Dermatol. 1988;90:218–24.

    Article  CAS  PubMed  Google Scholar 

  • Wichkowski K, Sore G, Khaïat K. Use of infrared spectroscopy for in vivo measurement of the stratum corneum moisturization after application of costmetic preparations. Int J Cosmet Sci. 1995;17(1):1–11.

    Article  Google Scholar 

  • Wickett RR, Murray BC. Comparison of cutometer and DTM for elasticity measurements. 20th Anniversary Symposium, Intemational Society for Bioengineering and the Skin. Miami; 1996 Feb 15–17.

    Google Scholar 

  • Wijn P. The alinear viscoelastic properties of human skin in vivo for small deformations. Ph.D. dissertation, Catholic University, Nijmegen; 1980.

    Google Scholar 

  • Wirchrowski K, Sore G, Khaiat A. Use of infrared spectroscopy for in vivo measurement of the stratum corneum moisturization after application of cosmetics preparations. Int J Cosmet Sci. 1985;17:1–11.

    Article  Google Scholar 

  • Wold S, Antti H, Qhman J. Orthogonal signal correction of NIR spectra. Chemometr Intell Lab Syst. 1998;44:175–85.

    Article  CAS  Google Scholar 

  • Xiao P, Ciortea LI, Singh H, Cui Y, Berg EP, Imhof RE. Opto-thermal in-vivo skin hydration measurements: − a comparison study of different measurement techniques. 15th International conference on photoacoustic and photothermal phenomena. J Phys Conf Ser. 2010; 214:012026.

    Google Scholar 

  • Zhang SL, Meyers CL, Subramanyan K, Hancewicz TM. Near infrared imaging for measuring and visualizing skin hydration. A comparison with visual assessment and electrical methods. J Biomed Opt. 2005;10(3):031107.

    Article  PubMed  Google Scholar 

  • Zhao JL, McLean DI, Zeng H. Recent advances in biomedical engineering. Vienna: IN-TECH; 2010. p. 455–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-claude Bernengo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Bernengo, Jc., de Rigal, J. (2015). Physical Methods to Measure Stratum Corneum Water Content In Vivo. In: Humbert, P., Maibach, H., Fanian, F., Agache, P. (eds) Agache’s Measuring the Skin. Springer, Cham. https://doi.org/10.1007/978-3-319-26594-0_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26594-0_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-26594-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics