Skip to main content
Log in

Estimation of kinetic parameters for the phase change memory materials by DSC measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal method for estimating the kinetic parameters of crystallization for the phase change memory (PCM) materials was discussed. This method was applied to the perspective PCM material of Ge2Sb2Te5 with different Bi contents (0, 0.5, 1, 3 mass%) for defining the kinetic triplet. Rutherford backscattering spectroscopy and X-ray diffraction were used to carry out elemental and phase analysis of the deposited films. Differential scanning calorimetry at eight different heating rates was used to investigate kinetics of thermally induced transformations in materials. Dependences of activation energies of crystallization (E a) on the degree of conversion were estimated by model-free Ozawa–Flynn–Wall, Kissinger–Akahira–Sunose, Tang and Starink methods. The obtained values of E a were quite close for all of these methods. The reaction models of the phase transitions were derived with using of the model-fitting Coats–Redfern method. In order to find pre-exponential factor A at progressive conversion values, we used values of E a already estimated by the model-free isoconversional method. It was established that the crystallization processes in thin films investigated are most likely describes by the second and third-order reactions models. Obtained kinetic triplet allowed predicting transition and storage times of the PCM cells. It was found that thin films of Ge2Sb2Te5 + 0.5 mass% Bi composition can provide the switching time of the phase change memory cell less than 1 ns. At the same time, at room temperature this material has a maximum storage time among the studied compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yamada N, Ohno E, Nishiuchi K, Akahira N, Takao M. Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory. J Appl Phys. 1991;69:2849.

    Article  CAS  Google Scholar 

  2. Kolomiets BT, Lebedev EA. Volt-ampernaya charakteristika tochechnogo kontakta so stekloobraznymi poluprovodnikami. Radiotekh Elektron. 1963;8:2097 (In Russian).

    Google Scholar 

  3. Ovshinsky SR. Reversible electrical switching phenomena in disordered structures. Phys Rev Lett. 1968;21:1450.

    Article  Google Scholar 

  4. Weidenhof V, Friedrich I, Ziegler S, Wuttig M. Laser induced crystallization of amorphous Ge2Sb2Te5 films. J Appl Phys. 2001;89:3168.

    Article  CAS  Google Scholar 

  5. Tominaga J, Shima T, Fons P, Simpson R, Kuwahara M, Kolobov A. What is the origin of activation energy in phase-change film? Jpn J Appl Phys. 2009;48:03A053.

    Article  Google Scholar 

  6. Trappe C, Bechevet B, Hyot B, Winkler O, Facsko S, Kurz H. Recrystallization dynamics of phase change optical disks with a nitrogen interface layer. Jpn J Appl Phys. 2000;39:766.

    Article  Google Scholar 

  7. Tominaga J, Nakano T, Atoda N. Double optical phase transition of GeSbTe thin films sandwiched between two SiN layers. Jpn J Appl Phys. 1998;37:1852.

    Article  CAS  Google Scholar 

  8. Ruitenberg G, Petford-Long AK, Doole RC. Determination of the isothermal nucleation and growth parameters for the crystallization of thin Ge2Sb2Te5 films. J Appl Phys. 2002;92:3116.

    Article  CAS  Google Scholar 

  9. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178.

    Article  CAS  Google Scholar 

  10. Badea M, Budrugeac P, Cucos A, Eugen S. Thermal decomposition kinetics of bis(pyridine)manganese(II) chloride. J Therm Anal Calorim. 2014;115:1999.

    Article  CAS  Google Scholar 

  11. Svoboda R, Malek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2014;115:1961.

    Article  CAS  Google Scholar 

  12. Muraleedharn K, Kripa S. DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim. 2014;115:1969.

    Article  Google Scholar 

  13. Tian L, Chen H, Chen Z, Wang X, Zhang S. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. J Therm Anal Calorim. 2014;115:45.

    Article  CAS  Google Scholar 

  14. Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68.

    Article  CAS  Google Scholar 

  15. Brown Michael E. Handbook of thermal analysis and Calorimetry: Amsterdam: Elsiever Science B.V; 1998.

    Google Scholar 

  16. Jankovic B. Kinetics analysis of the non-isothermal decomposition of potassium metabisulfite using the model-fitting and isoconventional (model-free) methods. Chem Eng J. 2008;139:128.

    Article  CAS  Google Scholar 

  17. Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dehydrate. J Therm Anal Calorim. 2014;115:1119.

    Article  CAS  Google Scholar 

  18. Mott NF, Davis EA. Electron processes in non-crystalline materials. Oxford: Clarendon Press; 1979.

    Google Scholar 

  19. Kelly A, Groves GW, Kidd P. Crystallography and crystal defects. Rev ed. Chichester: Willey; 2000.

    Google Scholar 

  20. Lee T-Y, Kim K-B, Cheong B-K, et al. Thin film alloy mixtures for high speed phase change optical storage: a study on (Ge1Sb2Te4)1−x(Sn1Bi2Te4)x. Appl Phys Lett. 2002;8:3313.

    Article  Google Scholar 

  21. Wang K, Wamwangi D, Ziegler S, Steimer C, Wuttig M. Influence of Bi doping upon the phase change characteristics of Ge2Sb2Te5. J Appl Phys. 2004;96:5557.

    Article  CAS  Google Scholar 

  22. Ambika S, Barman PB. Effect of Bi addition on the optical band gap of Se85Te15 chalcogenide thin films. J. Non-Oxide Glasses. 2012;3:19.

    Google Scholar 

  23. Kozyukhin S, Veres M, Nguyen HP, Ingram A, Kudoyarova V. Structural changes in doped Ge2Sb2Te5 thin films studied by raman spectroscopy. Physics Procedia. 2013;44:82.

    Article  CAS  Google Scholar 

  24. Mehta N, Kumar A. Studies of crystallization kinetics in a-Se80–xTe20Cdx and a-Se80–xTe20Gex alloys using D.C. conductivity measurements. J Therm Anal Calorim. 2006;83:669.

    Article  CAS  Google Scholar 

  25. Lacaita AL. Phase change memories: state-of-the-art, challenges and perspectives. Solid State Electron. 2006;50:24.

    Article  CAS  Google Scholar 

  26. Wang WJ, Shi LP, Zhao R, et al. Fast phase change transitions induced by picoseconds electrical pulses on phase change memory cells. Apll. Phys. Lett. 2008;93:043121.

    Article  Google Scholar 

  27. Yoon SM, Lee NY, Ryu SO, et al. Sb-Se-based phase-change memory device with lower power and higher speed operations. IEEE Electr Dev Lett. 2006;27:3679.

    Google Scholar 

  28. Burr GW, Breitwisch MJ, Franceschini M, et al. Phase change memory technology. J Vac Sc Techn. 2010;28:223.

    Article  CAS  Google Scholar 

  29. Eyring H. The activated complex in chemical reactions. J Chem Phys. 1935;3:107.

    CAS  Google Scholar 

  30. Simkovich R, Karton-Lifshin N, Shomer S, et al. Ultrafast excited-state proton transfer to the solvent occurs on a hundred-femtosecond time-scale. J Phys Chem A. 2013;117:3405.

    Google Scholar 

  31. Stauffer D, Aharony A. Introduction to percolation theory. 2nd ed. London: Taylor and Francis; 1992.

    Google Scholar 

  32. Popov AI, Savinov IS, Voronkov EN. Simulation of phase-change processes in non-volatile memory cells. J Non-Cryst Solids. 2006;352:1624.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Russian Federation, equipment of the Probe Microscopy Center for Collective Employment of Ryazan Radio Engineering University, Russian Foundation for Basic Research (14-03-00314), and Russian Science Foundation (14-13-01046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Babich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sherchenkov, A., Kozyukhin, S. & Babich, A. Estimation of kinetic parameters for the phase change memory materials by DSC measurements. J Therm Anal Calorim 117, 1509–1516 (2014). https://doi.org/10.1007/s10973-014-3899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3899-8

Keywords

Navigation