Skip to main content
Log in

Thermal decomposition kinetics of bis(pyridine)manganese(II) chloride

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal stability and the decomposition steps of bis(pyridine)manganese(II) chloride (Mn(py)2Cl2) were determined by thermogravimetry and derivative thermogravimetry. The initial compound and the solid compounds resulted from each step of decomposition were characterized by FT-IR spectroscopy and RX diffraction. It was pointed out that at the progressive heating of Mn(py)2Cl2, the following decomposition reactions occur:

$$ {\text{Mn}}\left( {\text{py}} \right)_{ 2} {\text{Cl}}_{ 2} \left( {\text{s}} \right) \, \to {\text{ Mn}}\left( {\text{py}} \right){\text{Cl}}_{ 2} \;\left( {\text{s}} \right) \, + {\text{ Py }}\left( {\text{g}} \right) $$
(I)
$$ {\text{Mn}}\left( {\text{py}} \right){\text{Cl}}_{ 2} \left( {\text{s}} \right) \, \to {\text{ Mn}}\left( {\text{py}} \right)_{ 2/ 3} {\text{Cl}}_{ 2} \;\left( {\text{s}} \right) \, + { 1}/ 3 {\text{ Py }}\left( {\text{g}} \right) $$
(II)
$$ {\text{Mn}}\left( {\text{py}} \right)_{ 2/ 3} {\text{Cl}}_{ 2} \left( {\text{s}} \right) \, \to {\text{ MnCl}}_{ 2} \left( {\text{s}} \right) \, + { 2}/ 3 {\text{ Py }}\left( {\text{g}} \right) $$
(III)

The dependence of the activation energy of these decompositions steps on the conversion degree, evaluated by isoconversional methods, shows that all decomposition reactions are complex. The mechanism and the corresponding kinetic parameters of reaction (I) were determined by multivariate non-linear regression program and checked for quasi-isothermal data. It was pointed out that the reaction (I) consists of three elementary steps, each step having a specific kinetic triplet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gill NS, Nyholm RS, Barclay GA, Christie TI, Pauling PJ. The structure of bis-pyridine metal dihalide complexes. J Inorg Nucl Chem. 1961;18:88–97.

    Article  CAS  Google Scholar 

  2. Allan Jr, Brown DH, Nuttall RH, Sharp DWA. Pyridine complexes of iron(II), copper(II), zinc(II), and cadmium(II) halides. J Chem Soc A. 1966;1966:1031–4.

    Article  Google Scholar 

  3. Allan JR, Brown DH, Nutall RH, Sharp DWA. The preparation and thermal decomposition of some pyridine and substituted-pyridine complexes of nickel(II) halides. J Inorg Nucl Chem. 1965;27:1529–36.

    Article  CAS  Google Scholar 

  4. Wendlandt WW. The reversibility of the octahedral → tetrahedral transition in bis(pyridine)-cobalt(II) chloride Co(py)2Cl2. J Therm Anal. 1969;1:469–72.

    Article  CAS  Google Scholar 

  5. Goldstein M, Unsworth WD. The far-infrared spectra (450–80 cm−1) of octahedral halogen-bridged transition metal(II) complexes. Inorg Chim Acta. 1970;4:342–6.

    Article  CAS  Google Scholar 

  6. Liao CY, Lee HM. Trans-dichlorodipyridinepalladium(II). Acta Cryst. 2006;62:680–1.

    Google Scholar 

  7. Karthikeyan M, Karthikeyan S, Manimaran B. Diaquadichloridobis(pyridine-N)manganese(II). Acta Cryst. 2011;E67:m1367.

    Google Scholar 

  8. Segal E, Vasile C. Studiul cinetic al descompunerii unor complecsi de cobalt, mangan si cupru cu piridina. Analele Universităţii Bucuresti. 1966;15:17–20.

    CAS  Google Scholar 

  9. Fătu D, Segal E. Cinetique de la decomposition thermique de certaines combinaison de la chlorure de manganees avec la pyridine et des pyridines substituees (parametres cinetiques obtenus des donnees thermogravimetriques). Rev Roum Chim. 1969;14:709–13.

    Google Scholar 

  10. Fătu D, Fătu S, Segal E. Cinetique de la decomposition thermique de certaines combinaisons complexes du chlorure de cuivre avec la pyridine et des pyridines substituees. Rev Roum Chim. 1969;14:1107–10.

    Google Scholar 

  11. Fătu D, Segal E. Etude cinetique nonisothermique de la decomposition thermique de la combinaison complexe dipyridinique de la bromure de cadmium. J Therm Anal. 1973;5:95–9.

    Article  Google Scholar 

  12. Jacobs LA, van Vuuren CPJ. The solid state chemistry of dichlorobis(pyridine) manganese(II) and dichlorobis(pyridine)nickel(II). Trans Met Chem. 1990;15:164–9.

    Article  CAS  Google Scholar 

  13. Kismali G, Emen FM, Yesilkaynak T, Meral O, Demirkiran D, Sel T, Kulcu N. The cell death pathway induced by metal halide complexes of pyridine and derivative ligands in hepatocellular carcinoma cells—necrosis or apoptosis? Eur Rev Med Pharmacol Sci. 2012;16:1001–12.

    CAS  Google Scholar 

  14. Budrugeac P. Some methodological problems concerning the kinetic analysis of non-isothermal data for thermal and thermo-oxidative degradation of polymers and polymeric materials. Polym Degrad Stab. 2005;89:265–73.

    Article  CAS  Google Scholar 

  15. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham AK, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhasni T. Computational aspects of kinetic analysis: Part A: The ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  16. Vyazovkin S, Burnham A, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  17. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  18. Budrugeac P. Theory and practice in the thermoanalytical kinetics of complex processes: application for the isothermal and non-isothermal thermal degradation of HDPE. Thermochim Acta. 2010;500:30–7.

    Article  CAS  Google Scholar 

  19. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  20. Ozawa TA. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  21. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  22. Opfermann J. Kinetic analysis using multivariate non-linear regression. I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  23. Budrugeac P, Homentcovschi D, Segal E. Critical considerations on the isoconversional methods for evaluating the activation energy. III On the evaluation of the activation energy from non-isothermal data. J Therm Anal Calorim. 2001;66:557–65.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Badea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badea, M., Budrugeac, P., Cucos, A. et al. Thermal decomposition kinetics of bis(pyridine)manganese(II) chloride. J Therm Anal Calorim 115, 1999–2005 (2014). https://doi.org/10.1007/s10973-013-3426-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3426-3

Keywords

Navigation