Skip to main content
Log in

A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The non-isothermal experiments of limestone decomposition at multi-heating rates in O2/N2 and O2/CO2 atmospheres were studied using thermogravimetry. The limestone decomposition kinetic model function, kinetic parameters of apparent activation energy (E), and pre-exponential factor (A) were evaluated by Bagchi and Malek method. The results shown that in 20 % O2/80 % N2 atmosphere, the limestone decomposed slowly following the contracting sphere volume model controlled by boundary reaction (spherical symmetry) in two stages, and the E increased by about 50 kJ mol−1 in the second decomposition stage. But in 20 % O2/80 % CO2 atmosphere, the presence of high-concentration CO2 significantly inhibited the limestone decomposition, and made the decomposition process occur at high temperature with a rapid rate; the decomposition kinetics was divided into three stages, the first stage was an accelerated decomposition process following the Mampel Power law model with the exponential law equation, the second stage followed the nth order chemical reaction model as an αt deceleration process, and the third stage belonged to the random nucleation and nuclei growth model with the Avrami–Erofeev equation. And with the heating rate increasing, the reaction order n showed a slight rise tendency. The E was about 1,245 kJ mol−1 in 20 % O2/80 % CO2 atmosphere, but was only about 175 kJ mol−1 in 20 % O2/80 % N2 atmosphere. The E and A increased markedly in the O2/CO2 atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nocuń-Wczelik W, Trybalska B, Żugaj E. Application of calorimetry as a main tool in evaluation of the effect of carbonate additives on cement hydration. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-2994-6.

  2. Setta FA, Neville A. Efficiency assessment of inhibitors on CaCO3 precipitation kinetics in the bulk and deposition on a stainless steel surface (316 L). Desalination. 2011;281:340–7.

    Article  CAS  Google Scholar 

  3. Klimova I, Kaljuvee T, Mikli V, Trikkel A. Influence of some lime-containing additives on the thermal behavior of urea. J Therm Anal Calorim. 2013;111(1):253–8.

    Article  CAS  Google Scholar 

  4. Chen J, Yao H, Zhang L. A study on the calcination and sulphation behaviour of limestone during oxy-fuel combustion. Fuel. 2012;102:386–95.

    Article  CAS  Google Scholar 

  5. Tian LN, Chen HP, Yang HP, Wang XH, Zhang SH. Study of limestone thermal decomposition in O2/CO2 atmosphere. In: Qi H, Zhao B, editors. Cleaner combustion and sustainable world. Berlin: Springer; 2013. p. 1283–9.

    Chapter  Google Scholar 

  6. Criado JM, González M, Málek J, Ortega A. The effect of the CO2 pressure on the thermal decomposition kinetics of calcium carbonate. Thermochim Acta. 1995;254:121–7.

    Article  CAS  Google Scholar 

  7. Khinast J, Krammer GF, Brunner C, Staudinger G. Decomposition of limestone: the influence of CO2 and particle size on the reaction rate. Chem Eng Sci. 1996;51(4):623–34.

    Article  CAS  Google Scholar 

  8. Samtani M, Dollimore D, Alexander K. Thermal decomposition of dolomite in an atmosphere of carbon dioxide: the effect of procedural variables in thermal analysis. J Therm Anal Calorim. 2001;65(1):93–101.

    Article  CAS  Google Scholar 

  9. García-Labiano F, Abad A, Diego LF, Gayán P, Adánez J. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chem Eng Sci. 2002;57(13):2381–93.

    Article  Google Scholar 

  10. Wang Y, Lin S, Suzuki Y. Study of limestone calcination with CO2 capture: decomposition behavior in a CO2 atmosphere. Energy Fuels. 2007;21(6):3317–21.

    Article  CAS  Google Scholar 

  11. Avila I, Crnkovic PM, Milioli FE, Luo KH. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure. Environ Technol. 2011;33(10):1175–82.

    Article  Google Scholar 

  12. Escardino A, García-Ten J, Saburit A, Feliu C, Gómez-Tena MP. Calcium carbonate decomposition in white-body tiles during firing in the presence of carbon dioxide. Ceram Int. 2013;39(6):6379–90.

    Article  CAS  Google Scholar 

  13. Galan I, Glasser F, Andrade C. Calcium carbonate decomposition. J Therm Anal Calorim. 2013;111(2):1197–202.

    Article  CAS  Google Scholar 

  14. Burnham AK, Dinh LN. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions. J Therm Anal Calorim. 2007;89(2):479–90.

    Article  CAS  Google Scholar 

  15. Málek J, Criado JM. Empirical kinetic models in thermal analysis. Thermochim Acta. 1992;203:25–30.

    Article  Google Scholar 

  16. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  17. Janković B, Mentus S, Jelić D. A kinetic study of non-isothermal decomposition process of anhydrous nickel nitrate under air atmosphere. Phys B. 2009;404(16):2263–9.

    Article  Google Scholar 

  18. Omrani A, Rostami A, Ravari F. Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111(1):677–83.

    Article  CAS  Google Scholar 

  19. Shuping Z, Yulong W, Mingde Y, Chun L, Junmao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101(1):359–65.

    Article  Google Scholar 

  20. Vasić M, Minić DM, Blagojević VA, Minić DM. Mechanism of thermal stabilization of Fe89.8Ni1.5Si5.2B3C0.5 amorphous alloy. Thermochim Acta. 2013;562:35–41.

    Article  Google Scholar 

  21. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B. 1966;4(5):323–8.

    CAS  Google Scholar 

  22. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  23. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404(1–2):163–76.

    Article  CAS  Google Scholar 

  24. Brown ME. Introduction to thermal analysis. Netherlands: Springer; 2004.

    Book  Google Scholar 

  25. Coats AW, Redfern JP. Kinetics parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  26. Ninan KN, Krishnan K, Krishnamurthy VN. Kinetics and mechanism of thermal decomposition of in situ generated calcium carbonate. J Therm Anal Calorim. 1991;37(7):1533–43.

    Article  CAS  Google Scholar 

  27. Rao TR. Kinetics of calcium carbonate decomposition. Chem Eng Technol. 1996;19(4):373–7.

    Article  CAS  Google Scholar 

  28. Maciejewski M. Computational aspects of kinetic analysis. Part B: The ICTAC Kinetics Project-the decomposition kinetics of calcium carbonate revisited, or some tips on survival in the kinetic minefield. Thermochim Acta. 2000;355(1–2):145–54.

    Article  CAS  Google Scholar 

  29. Ar İ, Doğu G. Calcination kinetics of high purity limestones. Chem Eng J. 2001;83(2):131–7.

    Article  CAS  Google Scholar 

  30. Escardino A, Garcia-Ten J, Feliu C. Kinetic study of calcite particle (powder) thermal decomposition: Part I. J Eur Ceram Soc. 2008;28(16):3011–20.

    Article  CAS  Google Scholar 

  31. Anbalagan G, Rajakumar PR, Gunasekaran S. Non-isothermal decomposition of Indian limestone of marine origin. J Therm Anal Calorim. 2009;97(3):917–21.

    Article  CAS  Google Scholar 

  32. Marinoni N, Allevi S, Marchi M, Dapiaggi M. A kinetic study of thermal decomposition of limestone using in situ high temperature X-ray powder diffraction. J Am Chem Soc. 2012;95(8):2491–8.

    CAS  Google Scholar 

  33. Georgieva V, Vlaev L, Gyurova K. Non-isothermal degradation kinetics of CaCO3 from different origin. J Chem. 2013;2013:12.

    Article  Google Scholar 

  34. Bagchi TP, Sen PK. Combined differential and integral method for analysis of non-isothermal kinetic data. Thermochim Acta. 1981;51(2–3):175–89.

    Article  CAS  Google Scholar 

  35. Chen CM, Zhao CS, Liang C, Pang KL. Calcination and sintering characteristics of limestone under O2/CO2 combustion atmosphere. Fuel Process Technol. 2007;88(2):171–8.

    Article  CAS  Google Scholar 

  36. Açıkalın K. Pyrolytic characteristics and kinetics of pistachio shell by thermogravimetric analysis. J Therm Anal Calorim. 2012;109(1):227–35.

    Article  Google Scholar 

  37. Cumming JW. Reactivity of coals via a weighted mean activation energy. Fuel. 1984;63(10):1436–40.

    Article  CAS  Google Scholar 

  38. Bigda R, Mianowski A. Influence of heating rate on kinetic quantities of solid phase thermal decomposition. J Therm Anal Calorim. 2006;84(2):453–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A financial support of this work by the National Key Technology R&D Program (No. 2010CB227003) and the National Nature Science Foundation of China (No. 51021065 and No. 50930006) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanping Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Chen, H., Chen, Z. et al. A study of non-isothermal kinetics of limestone decomposition in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres. J Therm Anal Calorim 115, 45–53 (2014). https://doi.org/10.1007/s10973-013-3316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3316-8

Keywords

Navigation