Skip to main content
Log in

Evaluation of the crystallization kinetic parameters in terms of the sheet resistance of amorphous As30Te60Ga10 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The sheet resistance (Rs), and hence electrical resistivity of different thicknesses (200–320 nm) of As30Te60Ga10 films was measured from 490 to 600 K. Crystallization kinetics parameters of the As30Te60Ga10 films were determined in terms of the evaluated Rs for various film thicknesses. The investigated kinetics parameters were compared to obtained experimental data from differential scanning calorimetry as well as were confirmed by the X-ray diffraction and scanning electron microscope. It was found that the exothermic heat flow can be obtained from the measured surface resistance, with high accuracy, for all As30Te60Ga10 films. The crystallization kinetic parameters of As30Te60Ga10 films were determined under non-isothermal and isoconversional conditions. Besides, the activation energy required for the amorphous-crystalline transition of As30Te60Ga10 was estimated and various models of the crystallization kinetics were applied. It was observed that the Šesták-Berggren equation is more appropriate, compared to the Johnson–Mehl–Avrami equation, for describing the kinetics of crystallization in As30Te60Ga10. The obtained results could give an experimental basis for the optimization of phase-change memory in the As–Te–Ga system in terms of the sheet resistance measurement and the possibility of its application for various phase-change materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Zakery, S.R. Elliott, Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids 330(1–3), 1–12 (2003)

    Article  ADS  Google Scholar 

  2. V.S. Shiryaev, J.L. Adam, X.H. Zhang, C. Boussard-Plédel, J. Lucas, M.F. Churbanov, Infrared fibers based on Te–As–Se glass system with low optical losses. J. Non-Cryst. Solids 336(2), 113–119 (2004)

    Article  ADS  Google Scholar 

  3. G. Abbady, A. Qasem, A.M. Abd-Elnaiem, Optical parameters and electronic properties for the transition of the amorphous-crystalline phase in Ge20Te80 thin films. J. Alloys Compd. 155705 (2020)

  4. J. Singh (Ed.), Optical Properties of Condensed Matter and Applications (Vol. 6) (John Wiley & Sons, 2006).

  5. A.M. Abd-Elnaiem, S. Moustafa, A.M. Abdelraheem, M.A. Abdel-Rahim, A.Z. Mahmoud, Effects of annealing on structural and optical properties of Ge20 Se70Sn10 thin films for optoelectronic applications. J. Non-Cryst. Solids 549, 120353 (2020)

    Article  Google Scholar 

  6. R. Zallen, C.M. Penchina, The physics of amorphous solids. Am. J. Phys. 54, 862–863 (1986)

    Article  ADS  Google Scholar 

  7. A. Burian, P. Lecante, A. Mosset, J. Galy, J.M. Tonnerre, D. Raoux, Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. J. Non-Cryst. Solids 212(1), 23–39 (1997)

    Article  ADS  Google Scholar 

  8. H. Endo, H. Hoshino, H. Ikemoto, T. Miyanaga, Semiconductor-metal transition in liquid As–Te mixtures. J. Phys.: Condens. Matter 12(28), 6077 (2000)

    ADS  Google Scholar 

  9. D.C. Kaseman, I. Hung, K. Lee, K. Kovnir, Z. Gan, B. Aitken, S. Sen, Tellurium speciation, connectivity, and chemical order in AsxTe100–x glasses: results from two-dimensional 125Te NMR spectroscopy. J. Phys. Chem. B 119(5), 2081–2088 (2015)

    Article  Google Scholar 

  10. S. Murugavel, K.V. Acharya, S. Asokan, Pressure-induced metallization in Al–As–Te glasses. J. Non-Cryst. Solids 191(3), 327–330 (1995)

    Article  ADS  Google Scholar 

  11. R.M. Hassan, S. Moustafa, A.M. Abd-Elnaiem, Optimization of the linear and nonlinear optical properties of amorphous As30Te69Ga1 thin films by the annealing process. J. Mater. Sci.: Mater. Electron. 31(22), 20043–20059 (2020)

    Google Scholar 

  12. A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, M.A. Abdel-Rahim, A.A. Abu-Sehly, M.M. Hafiz, Structural and optical characterization of annealed As30Te60Ga10 thin films prepared by thermal evaporation technique. Mater. Sci.-Pol. 36(2), 193–202 (2018)

    Article  ADS  Google Scholar 

  13. R.M. Hassan, R. Neffati, A. Abd-Elnaiem, A. Dahshan, Activation energies during glass transition and fragility of the As30Te64Ga6 chalcogenide glass. Phys. Scr. 96, 085703 (2021)

    Article  ADS  Google Scholar 

  14. M. Mohamed, A.M. Abd-Elnaiem, R.M. Hassan, M.A. Abdel-Rahim, M.M. Hafiz, Non-isothermal crystallization kinetics of As30Te60Ga10 glass. Appl. Phys. A 123(8), 511 (2017)

    Article  ADS  Google Scholar 

  15. A. Giridhar, S. Mahadevan, Studies on the As–Sb–Se glass system. J. Non-Cryst. Solids 51(3), 305–315 (1982)

    Article  ADS  Google Scholar 

  16. G. Abbady, A.M. Abd-Elnaiem, Thermal stability and crystallization kinetics of Ge13In8Se79 chalcogenide glass. Phase Transitions 92(7), 667–682 (2019)

    Article  Google Scholar 

  17. A.M. Abd-Elnaiem, G. Abbady, A thermal analysis study of melt-quenched Zn5Se95 chalcogenide glass. J. Alloys Compd. 818, 152880 (2020)

    Article  Google Scholar 

  18. W. Wu, Z. Zhao, B. Shen, J. Zhai, S. Song, Z. Song, Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory. Nanoscale 10(15), 7228–7237 (2018)

    Article  Google Scholar 

  19. E.R. Shaaban, M.Y. Hassaan, M.G. Moustafa, A. Qasem, Sheet resistance–temperature dependence, thermal and electrical analysis of As40S60−xSex thin films. Appl. Phys. A 126(1), 34 (2020)

    Article  ADS  Google Scholar 

  20. A.F.A.L. Naim, Crystallization Ga-Sb-Te thin films in terms of Sheet resistance. Int. J. New. Hor. Phys. 7(1), 1–6 (2020)

    Google Scholar 

  21. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, S. Moustafa, Comparative investigation of electronic properties of As-70 at.% Te thin films: influence of Ga doping and annealing temperature. J. Non-Cryst. Solids 540, 120062 (2020)

    Article  Google Scholar 

  22. A.M. Abd-Elnaiem, S. Moustafa, Optical properties of annealed As30Te67Ga3 thin films grown by thermal evaporation. Proc. Appl. Ceram. 12(3), 209–217 (2018)

    Article  Google Scholar 

  23. A.M. Mebed, M. Alzaid, R.M. Hassan, A.M. Abd-Elnaiem, Theoretical and experimental parameters of the structure and crystallization kinetics of melt-quenched As30Te64Ga6 glassy alloy. J. Inorg. Organomet. Polym. Mater. 31, 3334–3349 (2021)

    Article  Google Scholar 

  24. R.M. Hassan, A.Z. Mahmoud, M.A. Abdel-Rahim, H.S. Assaedi, S.W. Alraddadi, A.M. Abd-Elnaiem, Effect of thermal annealing on structure and optical properties of amorphous As30Te64Ga6 thin films. J. Inorg. Organomet. Polym. Mater. 31, 3037–3053 (2021)

    Article  Google Scholar 

  25. M. Dongol, M.M. Hafiz, M. Abou-Zied, A.F. Elhady, Effect of composition on the electrical and structural properties of As–Te–Ga thin films. Appl. Surf. Sci. 185(1–2), 1–10 (2001)

    Article  ADS  Google Scholar 

  26. N. Manikandan, M. Paulraj, S. Asokan, Thermal diffusivity measurements on As–Te–Ga glasses by photo-thermal deflection technique: composition dependence and topological thresholds. J. Non-Cryst. Solids 355(1), 58–60 (2009)

    Article  ADS  Google Scholar 

  27. T. Ju, J. Viner, H. Li, P.C. Taylor, Optical properties of Ge–Sb–Te chalcogenides. J. Non-Cryst. Solids 354(19–25), 2662–2664 (2008)

    Article  ADS  Google Scholar 

  28. G. Wang, Y. Chen, X. Shen, Y. Lu, S. Dai, Q. Nie, T. Xu, Controllable formation of nano-crystalline in Sb4Te films by Zn doping. J. Appl. Phys. 117(4), 045303 (2015)

    Article  ADS  Google Scholar 

  29. H. Berger, G. Jäniche, N. Grachovskaya, Electric conductivity and Hall effect in evaporated cadmium selenide films. Physica Status Solidi (b) 33(1), 417–424 (1969)

    Article  ADS  Google Scholar 

  30. A.K. Abass, A. Krier, R.A. Collins, The influence of iodine on the electrical properties of lead phthalocyanine (PbPC) interdigital planar gas sensors. Physica Status Solidi (a) 142(2), 435–442 (1994)

    Article  ADS  Google Scholar 

  31. C.R. Tellier, A theoretical description of grain boundary electron scattering by an effective mean free path. Thin Solid Films 51(3), 311–317 (1978)

    Article  ADS  Google Scholar 

  32. K.L. Chopra, I. Kaur, Thin Film Phenomena, vol. 137 (McGraw-hill, New York, 1969)

    Google Scholar 

  33. D. Lakshminarayana, R.R. Desai, Thickness dependence of electrical resistivity and activation energy in AgSbTe2 thin films. J. Mater. Sci.: Mater. Electron. 4(2), 183–186 (1993)

    Google Scholar 

  34. V.D. Das, K.S. Bhat, Electrical conductivity of air-exposed and unexposed lead telluride thin films-temperature and size effects. J. Phys. D Appl. Phys. 22(1), 162 (1989)

    Article  ADS  Google Scholar 

  35. V.D. Das, K.S. Bhat, Electrical conductivity of air-exposed and unexposed lead selenide thin films: temperature and size effects. Phys. Rev. B 40(11), 7696 (1989)

    Article  ADS  Google Scholar 

  36. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29(11), 1702–1706 (1957)

    Article  Google Scholar 

  37. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As-Sb-Se glasses. J. Non-Cryst. Solids 88(1), 11–34 (1986)

    Article  ADS  Google Scholar 

  38. P. Duhaj, D. Barančok, A. Ondrejka, The study of transformation kinetics of the amorphous Pd- Si alloys. J. Non-Cryst. Solids 21(3), 411–428 (1976)

    Article  ADS  Google Scholar 

  39. K. Tanaka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39(2), 1270 (1989)

    Article  ADS  Google Scholar 

  40. K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19(1), 291–296 (1984)

    Article  ADS  Google Scholar 

  41. T. Akahira, T. Sunose, Joint Convention of Four Electrical Institutes. Res. Report Chiba Inst. Technol. Sci. Technol. 16, 22 (1971)

    Google Scholar 

  42. J.H. Flynn, The ‘temperature integral’—its use and abuse. Thermochim. Acta 300(1–2), 83–92 (1997)

    Article  Google Scholar 

  43. H.L. Friedman, New methods for evaluating kinetic parameters from thermal analysis data. J. Polym. Sci., Part C: Polym. Lett. 7(1), 41–46 (1969)

    Google Scholar 

  44. S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520(1–2), 1–19 (2011)

    Article  Google Scholar 

  45. C. Păcurariu, R. Lazău, I. Lazău, R. Ianoş, B. Tiţa, Non-isothermal crystallization kinetics of some basaltic glass-ceramics containing CaF2 as nucleation agent. J. Therm. Anal. Calorim. 97(2), 507–513 (2009)

    Article  Google Scholar 

  46. J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3(1), 1–12 (1971)

    Article  Google Scholar 

  47. J. Málek, Kinetic analysis of crystallization processes in amorphous materials. Thermochim. Acta 355(1–2), 239–253 (2000)

    Article  Google Scholar 

  48. J.D. Hancock, J.H. Sharp, Method of comparing solid-state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3. J. Am. Ceram. Soc. 55(2), 74–77 (1972)

    Article  Google Scholar 

  49. J.H. Schachtschneider, R.G. Snyder, Vibrational analysis of the n-paraffins—II: normal co-ordinate calculations. Spectrochim. Acta 19(1), 117–168 (1963)

    Article  ADS  Google Scholar 

  50. J. Málek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61–73 (1995)

    Article  Google Scholar 

  51. M. Marinović-Cincović, B. Janković, B. Milićević, Ž Antić, R.K. Whiffen, M.D. Dramićanin, The comparative kinetic analysis of the non-isothermal crystallization process of Eu3+ doped Zn2SiO4 powders prepared via polymer induced sol–gel, method. Powder Technol. 249, 497–512 (2013)

    Article  Google Scholar 

  52. P. Pustkova, D. Švadlák, J. Shánělová, J. Málek, The non-isothermal crystallization kinetics of Sb2S3 in the (GeS2)0.2(Sb2S3)0.8 glass. ThermochimicaActa 445(2), 116–120 (2006).

    Article  Google Scholar 

  53. H.L. Friedman, Kinetics of thermal degradation of char‐forming plastics from thermogravimetry. Application to a phenolic plastic. In Journal of polymer science part C: polymer symposia (Vol. 6, No. 1, pp. 183–195). New York: Wiley Subscription, Services, Inc., A Wiley Company (1964).

Download references

Acknowledgements

Dr. R. M. Hassan would like to thank Dr. Ammar Qasem (Physics Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo) for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd-Elnaiem, A.M., Hassan, R.M. Evaluation of the crystallization kinetic parameters in terms of the sheet resistance of amorphous As30Te60Ga10 films. Appl. Phys. A 127, 919 (2021). https://doi.org/10.1007/s00339-021-05083-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05083-7

Keywords

Navigation