Skip to main content
Log in

Evaluation of two extraction chromatography resins for scandium and titanium separation for medical isotope production

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Scandium-47 (47Sc) can be used in nuclear medicine as a therapeutic-diagnostic, or “theragnostic,” radioactive medical isotope for cancer detection and treatment. The 47Sc isotope can be produced through the photonuclear reaction 48Ti(γ,p)47Sc by irradiating enriched 48Ti target material. The enriched target material necessary for production is costly; 48TiO2 costs ~ $1550/g, and targets can be > 50 g ($77,500) to produce medically relevant amounts of 47Sc. In order to keep costs low, a highly efficient separation of scandium from bulk titanium is desired, along with efficient methods for recycling the target material. This research is focused on evaluating efficient methods for the separation of scandium from bulk quantities of titanium using commercially available diglycolamide-based and hydroxamate-based extraction chromatography resins (DGA resin and ZR resin, respectively). The sorption of 47Sc and Ti on these resins were investigated at varying concentrations of HNO3, HCl, H2SO4, and HF to explore how they might be used in a large-scale production/processing setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Burrows TW (2007) Nuclear data sheets for A = 47. Nucl Data Sheets 108:923–1056. https://doi.org/10.1016/j.nds.2007.04.002

    Article  CAS  Google Scholar 

  2. Umbricht CA, Benešová M, Schmid RM, Türler A, Schibli R, van der Meulen NP, Müller C (2017) 44Sc-PSMA-617 for radiotheragnostics in tandem with 177Lu-PSMA-617—preclinical investigations in comparison with 68Ga-PSMA-11 and 68Ga-PSMA-617. EJNMMI Res 7:9. https://doi.org/10.1186/s13550-017-0257-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Price EW, Orvig C (2014) Matching chelators to radiometals for radiopharmaceuticals. Chem Soc Rev 43:260–290. https://doi.org/10.1039/C3CS60304K

    Article  CAS  PubMed  Google Scholar 

  4. Qaim SM (2019) Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 322:1257–1266. https://doi.org/10.1007/s10967-019-06797-y

    Article  CAS  Google Scholar 

  5. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509. https://doi.org/10.1007/s10967-018-6238-x

    Article  CAS  Google Scholar 

  6. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057. https://doi.org/10.1021/acs.chemrev.8b00363

    Article  CAS  PubMed  Google Scholar 

  7. Wester H-J, Schottelius M (2019) PSMA-targeted radiopharmaceuticals for imaging and therapy. Semin Nucl Med 49:302–312. https://doi.org/10.1053/j.semnuclmed.2019.02.008

    Article  PubMed  Google Scholar 

  8. Rotsch DA, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, Gromov RG, Greene J (2018) Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot 131:77–82. https://doi.org/10.1016/j.apradiso.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Radchenko V, Meyer CAL, Engle JW, Naranjo CM, Unc GA, Mastren T, Brugh M, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2016) Separation of 44Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of 44Ti/44Sc generator system. J Chromatogr A 1477:39–46. https://doi.org/10.1016/j.chroma.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  10. Chernysheva M, Loveless SC, Brossard T, Becker K, Cingoranelli S, Aluicio-Sarduy E, Song J, Ellison P, Nolen J, Rotsch DA, Lapi SE, Engle JW (2021) Accelerator production of scandium radioisotopes: 43Sc, 44Sc, and 47Sc. Curr Radiopharm 14:359–373. https://doi.org/10.2174/1874471014999210112205535

    Article  CAS  PubMed  Google Scholar 

  11. Lutathera Dosage (2022) Drugs.com. https://www.drugs.com/dosage/lutathera.html. Accessed 12 Dec 2022

  12. Loveless CS, Radford LL, Ferran SJ, Queern SL, Shepherd MR, Lapi SE (2019) Photonuclear production, chemistry, and in vitro evaluation of the theranostic radionuclide 47Sc. EJNMMI Res 9:42. https://doi.org/10.1186/s13550-019-0515-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yagi M, Kondo K (1977) Preparation of carrier-free 47Sc by the 48Ti (γ, p) reaction. Int J Appl Radiat Isot 28:463–468. https://doi.org/10.1016/0020-708X(77)90178-8

    Article  CAS  Google Scholar 

  14. Mamtimin M, Harmon F, Starovoitova VN (2015) 47Sc production from titanium targets using electron linacs. Appl Radiat Isot 102:1–4. https://doi.org/10.1016/j.apradiso.2015.04.012

    Article  CAS  PubMed  Google Scholar 

  15. Misiak R, Walczak R, Wąs B, Bartyzel M, Mietelski JW, Bilewicz A (2017) 47Sc production development by cyclotron irradiation of 48Ca. J Radioanal Nucl Chem 313:429–434. https://doi.org/10.1007/s10967-017-5321-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sitarz M, Szkliniarz K, Jastrzębski J, Choiński J, Guertin A, Haddad F, Jakubowski A, Kapinos K, Kisieliński M, Majkowska A, Nigron E, Rostampour M, Stolarz A, Trzcińska A, Walczak R, Wojtkowska J, Zipper W, Bilewicz A (2018) Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 142:104–112. https://doi.org/10.1016/j.apradiso.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  17. Deilami-nezhad L, Moghaddam-Banaem L, Sadeghi M, Asgari M (2016) Production and purification of Scandium-47: a potential radioisotope for cancer theranostics. Appl Radiat Isot 118:124–130. https://doi.org/10.1016/j.apradiso.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  18. Kolsky KL, Joshi V, Mausner LF, Srivastava SC (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 49:1541–1549. https://doi.org/10.1016/S0969-8043(98)00016-5

    Article  CAS  PubMed  Google Scholar 

  19. Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory, vol 99, pp 635–640. https://doi.org/10.1524/ract.2011.1882

  20. Pupillo G, Mou L, Boschi A, Calzaferri S, Canton L, Cisternino S, De Dominicis L, Duatti A, Fontana A, Haddad F, Martini P, Pasquali M, Skliarova H, Esposito J (2019) Production of 47Sc with natural vanadium targets: results of the PASTA project. J Radioanal Nucl Chem 322:1711–1718. https://doi.org/10.1007/s10967-019-06844-8

    Article  CAS  Google Scholar 

  21. Snow MS, Foley A, Ward JL, Kinlaw MT, Stoner J, Carney KP (2021) High purity 47Sc production using high-energy photons and natural vanadium targets. Appl Radiat Isot 178:109934. https://doi.org/10.1016/j.apradiso.2021.109934

    Article  CAS  PubMed  Google Scholar 

  22. Walczak R, Sitarz M, Misiak R, Pruszynski M, Majkowska-Pilip A, Jastrzebski J, Haddad F, Bilewicz A (2020) Trends in radiopharmaceuticals (ISTR-2019). International Atomic Energy Agency, Vienna

    Google Scholar 

  23. Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang MR (2016) Production of scandium-43 and-47 from a powdery calcium oxide target via the Ca-nat/44(alpha, x)-channel. Appl Radiat Isot 116:8–12. https://doi.org/10.1016/j.apradiso.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  24. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, van der Meulen N, Türler A, Schibli R (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55:1658–1664. https://doi.org/10.2967/jnumed.114.141614

    Article  CAS  PubMed  Google Scholar 

  25. Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem 305:127–132. https://doi.org/10.1007/s10967-015-4039-z

    Article  CAS  Google Scholar 

  26. Pawlak D, Wojdowska W, Parus LJ, Cieszykowska I, Zoltowska M, Garnuszek P, Mikolajczak R (2019) Comparison of separation methods for 47Ca/47Sc radionuclide generator. Appl Radiat Isot 151:140–144. https://doi.org/10.1016/j.apradiso.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  27. Abel EP, Domnanich K, Clause HK, Kalman C, Walker W, Shusterman JA, Greene J, Gott M, Severin GW (2020) Production, collection, and purification of 47Ca for the generation of 47Sc through isotope harvesting at the National Superconducting Cyclotron Laboratory. ACS Omega 5:27864–27872. https://doi.org/10.1021/acsomega.0c03020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horwitz EP, McAlister DR, Bond AH, Barrans RE (2005) Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extr Ion Exch 23:319–344. https://doi.org/10.1081/SEI-200049898

    Article  CAS  Google Scholar 

  29. Pourmand A, Dauphas N (2010) Distribution coefficients of 60 elements on TODGA resin: application to Ca, Lu, Hf, U and Th isotope geochemistry. Talanta 81:741–753. https://doi.org/10.1016/j.talanta.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  30. Boron-Brenner LP (2018) Development of chemical separation methods using transition metals for nuclear forensic and medicinal applications. University of Nevada, Las Vegas

    Google Scholar 

  31. Roman AR, Bond EM (2016) A new method for separating first row transition metals and actinides from synthetic melt glass. J Radioanal Nucl Chem 307:2471–2478. https://doi.org/10.1007/s10967-016-4695-7

    Article  CAS  Google Scholar 

  32. Alliot C, Kerdjoudj R, Michel N, Haddad F, Huclier-Markai S (2015) Cyclotron production of high purity 44m,44Sc with deuterons from 44CaCO3 targets. Nucl Med Biol 42:524–529. https://doi.org/10.1016/j.nucmedbio.2015.03.002

    Article  CAS  PubMed  Google Scholar 

  33. Dirks C, Happel S, Bombard A (2016) On the development and characterization of an hydroxamate based extraction chromatographic resin. In: RANC 2016, Budapest, Hungary, 10–16 April 2016

  34. Chaple IF, Thiele K, Thaggard G, Fernandez S, Boros E, Lapi SE (2020) Optimized methods for production and purification of Titanium-45. Appl Radiat Isot 166:109398. https://doi.org/10.1016/j.apradiso.2020.109398

    Article  CAS  PubMed  Google Scholar 

  35. Bokhari TH, Mushtaq A, Khan IU (2010) Separation of no-carrier-added radioactive scandium from neutron irradiated titanium. J Radioanal Nucl Chem 283:389–393. https://doi.org/10.1007/s10967-009-0370-6

    Article  CAS  Google Scholar 

  36. Pietrelli L, Mausner LF, Kolsky KL (1992) Separation of carrier-free 47Sc from titanium targets. J Radioanal Nucl Chem 157:335–345. https://doi.org/10.1007/BF02047448

    Article  CAS  Google Scholar 

  37. Mausner LF, Kolsky KL, Joshi V, Srivastava SC (1998) Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 49:285–294. https://doi.org/10.1016/S0969-8043(97)00040-7

    Article  CAS  PubMed  Google Scholar 

  38. Holland JP, Sheh Y, Lewis JS (2009) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36:729–739. https://doi.org/10.1016/j.nucmedbio.2009.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gajecki L, Marino CM, Cutler CS, Sanders VA (2023) Evaluation of hydroxamate-based resins towards a more clinically viable 44Ti/44Sc radionuclide generator. Appl Radiat Isot 192:110588. https://doi.org/10.1016/j.apradiso.2022.110588

    Article  CAS  PubMed  Google Scholar 

  40. Brown MA, Rotsch DA, Nolen JA (2019) Process for the separation and purification of scandium medical isotopes. United States Patent US010344355B2, 9 July 2019

  41. McLain DR, Liu C, Sudowe R (2018) Using Sr resin with mixed acid matrices. J Radioanal Nucl Chem 316:485–490. https://doi.org/10.1007/s10967-018-5778-4

    Article  CAS  Google Scholar 

  42. Horwitz EP, Dietz ML, Chiarizia R, Diamond H, Essling AM, Graczyk D (1992) Separation and preconcentration of uranium from acidic media by extraction chromatography. Anal Chim Acta 266:25–37. https://doi.org/10.1016/0003-2670(92)85276-C

    Article  CAS  Google Scholar 

  43. Salit ML, Turk GC (1998) A drift correction procedure. Anal Chem 70:3184–3190. https://doi.org/10.1021/ac980095b

    Article  CAS  PubMed  Google Scholar 

  44. Salit ML, Turk GC, Lindstrom AP, Butler TA, Beck CM, Norman B (2001) Single-element solution comparisons with a high-performance inductively coupled plasma optical emission spectrometric method. Anal Chem 73:4821–4829. https://doi.org/10.1021/ac0155097

    Article  CAS  PubMed  Google Scholar 

  45. Salit ML, Vocke RD, Kelly WR (2000) An ICP-OES method with 0.2 expanded uncertainties for the characterization of LiAlO2. Anal Chem 72:3504–3511. https://doi.org/10.1021/ac0000877

    Article  CAS  PubMed  Google Scholar 

  46. Radchenko V, Engle JW, Medvedev DG, Maassen JM, Naranjo CM, Unc GA, Meyer CAL, Mastren T, Brugh M, Mausner L, Cutler CS, Birnbaum ER, John KD, Nortier FM, Fassbender ME (2017) Proton-induced production and radiochemical isolation of 44Ti from scandium metal targets for 44Ti/44Sc generator development. Nucl Med Biol 50:25–32. https://doi.org/10.1016/j.nucmedbio.2017.03.006

    Article  CAS  PubMed  Google Scholar 

  47. Happel S (2021) An overview over some new extraction chromatographic resins and their application in radiopharmacy. TrisKem International, Bruz

    Google Scholar 

  48. O’Hara MJ, Murray NJ, Carter JC, Kellogg CM, Link JM (2018) Tandem column isolation of zirconium-89 from cyclotron bombarded yttrium targets using an automated fluidic platform: anion exchange to hydroxamate resin columns. J Chromatogr A 1567:37–46. https://doi.org/10.1016/j.chroma.2018.06.035@@@

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production and Argonne National Laboratory under U.S. Department of Energy contract DE-AC02-06CH11357. The authors would like to thank Argonne’s Yifen Tsai and the Analytical Chemistry Laboratory for collecting the ICP-MS data and Argonne’s Low Energy Accelerator Facility (LEAF) for irradiating the Ti target material. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek R. McLain.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLain, D.R., Brossard, T.W., De Kruijff, R. et al. Evaluation of two extraction chromatography resins for scandium and titanium separation for medical isotope production. J Radioanal Nucl Chem 332, 553–562 (2023). https://doi.org/10.1007/s10967-023-08783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08783-x

Keywords

Navigation