Skip to main content
Log in

Theranostic radionuclides: recent advances in production methodologies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Various concepts involved in the quantification of radiation dose while following the theranostic approach in nuclear medicine are outlined. The availability of the relevant radionuclides is discussed. The production methodologies of many of the “matched-pair” of radionuclides were recently reviewed in detail. In this contribution, some additional information on a few positron emitters and therapeutic radionuclides is presented. In addition to generator production of 68Ga (T½ = 1.13 h), its direct production at a medical cyclotron is critically discussed. Besides conventional use of reactors and cyclotrons, there is a growing interest in utilizing fast neutrons from a d/Be source and high-energy photons from an electron linear accelerator to produce a few special therapeutic radionuclides. The related new developments are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70/71:249–272

    Google Scholar 

  2. Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318:1493–1509

    CAS  Google Scholar 

  3. Zimmer AM, Kuzel TM, Spies WG, Duda RB, Webber DI, Kazikiewicz JM, Radosevich A, Locicero J, Robinson PG, Gilyon KA, Samuelson E, Spies SM, Rosen ST, Maguire RT (1992) Comparative pharmacokinetics of 111In and 90Y B72.3 in patients following single dose intravenous administration. Antibody Immunoconj 5:285–294

    Google Scholar 

  4. Mausner LF, Srivastava SC (1993) Selection of radionuclides for radioimmunotherapy. Med Phys 20:503–509

    CAS  PubMed  Google Scholar 

  5. Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim Acta 99:635–640

    CAS  Google Scholar 

  6. Rösch F, Qaim SM, Stöcklin G (1993) Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n)- and natRb(3He, xn)-processes. Radiochim Acta 61:1–8

    Google Scholar 

  7. Rösch F, Qaim SM, Stöcklin G (1993) Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isotopes 44:677–681

    Google Scholar 

  8. Herzog H, Rösch F, Stöcklin G, Lueders C, Qaim SM, Feinendegen LE (1993) Measurement of pharmacokinetics of 86Y radiopharmaceuticals with PET and radiation dose calculation of analogous 90Y radiotherapeutics. J Nucl Med 34:2222–2226

    CAS  PubMed  Google Scholar 

  9. Rösch F, Herzog H, Qaim SM (2017) The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 10:56

    PubMed Central  Google Scholar 

  10. Rösch F, Baum RP (2011) Generator-based PET radiopharmaceuticals for molecular imaging of tumours: on the way to THERANOSTICS. Dalton Trans 40:6104–6111

    PubMed  Google Scholar 

  11. Baum RB, Rösch F (2013) Theranostics, Gallium-68, and other radionuclides: a pathway to personalized diagnosis and treatment. Springer, Berlin

    Google Scholar 

  12. Fani M, Del Pozzo L, Abiraj K, Mansi R, Tamma ML, Cescato R, Waser B, Weber WA, Reubi JC, Maecke HR (2011) PET of somatostatin receptor-positive tumors using 64Cu- and 68Ga-somatostatin antagonists: the chelate makes the difference. J Nucl Med 52:1110–1118

    CAS  PubMed  Google Scholar 

  13. Velikyan I (2012) Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics 2:424–426

    PubMed  PubMed Central  Google Scholar 

  14. Qaim SM (Chair) Panel discussion on medical radionuclides. In: Cerutti F, Ferrari A, Kawano T, Salvat-Pujol F, Talou P (eds) Proceedings of 15th international conference on nuclear reaction mechanisms, Varenna, June 2018, CERN, Geneva. pp 361–362

  15. Qaim SM (2011) Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim Acta 99:611–625

    CAS  Google Scholar 

  16. Qaim SM (2012) The present and future of medical radionuclide production. Radiochim Acta 100:635–651

    CAS  Google Scholar 

  17. Qaim SM, Spahn I, Scholten B, Neumaier B (2016) Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim Acta 104:601–624

    CAS  Google Scholar 

  18. Qaim SM, Spahn I (2018) Development of novel radionuclides for medical applications. J Label Compd Radiopharm 61:126–140

    CAS  Google Scholar 

  19. Qaim SM, Scholten B, Spahn I, Neumaier B (2019) Positron emitting radionuclides for applications, with special emphasis on their production for medical use. Radiochim Acta. https://doi.org/10.1515/ract-2019-3154

    Article  Google Scholar 

  20. Qaim SM (2001) Therapeutic radionuclides and nuclear data. Radiochim Acta 89:297–302

    CAS  Google Scholar 

  21. Qaim SM (2015) Nuclear data for medical radionuclides. J Radioanal Nucl Chem 305:233–245

    CAS  Google Scholar 

  22. Qaim SM (2017) Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol 44:31–49

    CAS  PubMed  Google Scholar 

  23. Tárkányi FT, Ignatyuk AV, Hermanne A, Capote R, Carlson BV, Engle JW, Kellett MA, Kibédi T, Kim GN, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takács S, Verpelli M (2019) Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J Radioanal Nucl Chem 319:533–666

    Google Scholar 

  24. Engle JW, Ignatyuk AV, Capote R, Carlson BV, Hermanne A, Kellett MA, Kibedi T, Kim G, Kondev FG, Hussain M, Lebeda O, Luca A, Nagai Y, Naik H, Nichols AL, Nortier FM, Suryanarayana SV, Takacs S, Tarkanyi FT, Verpelli M (2019) Recommended nuclear data for the production of therapeutic radionuclides. Nucl Data Sheets 155:56–74

    CAS  Google Scholar 

  25. Qaim SM (2019) Medical radionuclide production. De Gruyter, Berlin

    Google Scholar 

  26. Aslam MN, Qaim SM (2014) Nuclear model analysis of excitation functions of proton, deuteron and alpha-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl Radiat Isot 89:65–73

    CAS  PubMed  Google Scholar 

  27. Aslam MN, Qaim SM (2014) Nuclear model analysis of excitation functions of proton and deuteron induced reactions on 64Zn and 3He- and alpha-particle induced reactions on 59Co leading to the formation of copper-61: comparison of major production routes. Appl Radiat Isot 94:131–140

    CAS  PubMed  Google Scholar 

  28. Szelecsényi F, Blessing G, Qaim SM (1993) Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni - Possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl Radiat Isot 44:575–580

    Google Scholar 

  29. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, Lewis JS, Cutler CS, Anderson CJ, Welch MJ (1999) High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 26:351–358

    CAS  PubMed  Google Scholar 

  30. Szelecsényi F, Steyn GF, Kovacs Z, van der Walt TN, Suzuki K (2006) Comments on the feasibilty of 61Cu production by proton irradiation of natZn on a medical cyclotron. Appl Radiat Isot 64:789–791

    PubMed  Google Scholar 

  31. Thieme S, Walther M, Preusche S, Rajander J, Pietzsch HJ, Lill JO, Kaden M, Solin O, Steinbach J (2013) High specific activity 61Cu via 64Zn(p, α)61Cu reaction at low proton energies. Appl Radiat Isot 72:169–176

    CAS  PubMed  Google Scholar 

  32. Asad AH, Smith SV, Morandeau LM, Chan S, Jeffery CM, Price RI (2016) Production of 61Cu by the natZn(p, α) reaction: improved separation and specific activity determination by titration with three chelators. J Radioanal Nucl Chem 307:899–906

    CAS  Google Scholar 

  33. Fukumura T, Okada K, Szelecsényi F, Kovács Z, Suzuki K (2004) Practical production of 61Cu using natural Co target and its simple purification with a chelating resin for 61Cu-ATSM. Radiochim Acta 92:209–214

    CAS  Google Scholar 

  34. Das SS, Chattopadhyay S, Barua L, Das MK (2012) Production of 61Cu using natural cobalt target and its separation using ascorbic acid and common anion exchange resin. Appl Radiat Isot 70:365–368

    CAS  PubMed  Google Scholar 

  35. Rösch F, Riss PJ (2010) The renaissance of the 68Ge/68Ga radionuclide generator initiates new developments in 68Ga radiopharmaceutical chemistry. Curr Top Med Chem 10:1633–1668

    Google Scholar 

  36. Romero E, Morcillo MA (2017) Inorganic oxides with potential application in the preparation of a 68Ge/68Ga generator system. Appl Radiat Isot 119:28–35

    CAS  PubMed  Google Scholar 

  37. Synowiecki MA, Perk LR, Nijisen JF (2018) Production of novel diagnostic radionuclides in small cyclotrons. EJNMMI Radiopharmacy amd Chemistry 3:1–25

    Google Scholar 

  38. Szelecsényi F, Kovács Z, Nagatsu K, Fukumura K, Suzuki K, Mukai K (2012) Investigation of direct production of 68Ga with low energy multiparticle accelerator. Radiochim Acta 100:5–11

    Google Scholar 

  39. Szelecsényi F, Boothe TE, Takács S, Tárkányi F, Tavano E (1998) Evaluated cross section and thick target yield data bases of Zn + p processes for practical applications. Appl Radiat Isot 49:1005–1032

    Google Scholar 

  40. IAEA-Report (2011) Charged Particle Cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, TECDOC-1211, IAEA, Vienna, Austria, for later updates see www-nds.iaea.org/medical/

  41. Aslam MN, Amjed N, Qaim SM (2015) Evaluation of excitation functions of the 68,67,66Zn(p, xn)68,67,66Ga and 67Zn(p, α)64Cu reactions: validation of evaluated data through comparison with experimental excitation functions of the natZn(p, x)66,67Ga and natZn(p, x)64Cu processes. Appl Radiat Isot 96:102–113

    CAS  PubMed  Google Scholar 

  42. Baldik R, Dombayci A (2016) Investigation of the production of 68Ga using pre-equilibrium models. Appl Radiat Isot 113:10–17

    CAS  PubMed  Google Scholar 

  43. Sadeghi M, Kakavand T, Rajabifar S, Mokhtari L, Rahimi-Nezhad A (2009) Cyclotron production of 68Ga via proton-induced reaction on 68Zn target. Nukleonika 54:25–28

    CAS  Google Scholar 

  44. Flores-Moreno A, Valle-Gonzalez M, Zarate-Morales A, Ferro-Flores G, Pedraza-Lopez M, de Murphy CA, Avila-Rodriguez MA (2011) Production of 68Ga for preclinical applications by irradiation of a natural Zn foil with 7 MeV protons. J Label Compd Radiopharm 54:S249

    Google Scholar 

  45. Engle JW, Lopez-Rodriguez V, Gaspar-Carcamo RE, Valdovinos HF, Valle-Gonzalez M, Trejo-Ballado F, Severin GW, Barnhart TE, Nickles RJ, Avila-Rodriguez MA (2012) Very high specific activity 66/68Ga from zinc targets for PET. Appl Radiat Isot 70:1792–1796

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin M, Waligorski GJ, Lepera CG (2018) Production of curie quantities of 68Ga with a medical cyclotron via the 68Zn(p, n)68Ga reaction. Appl Radiat Isot 133:1–3

    CAS  PubMed  Google Scholar 

  47. Jensen M, Clark J (2011) Direct production of Ga-68 from proton bombardment of concentrated aqueous solutions of [Zn-68] zinc chloride. In: Proceedings of 13th international workshop on targetry and target chemistry. pp 288–292

  48. Pandey MK, Byrne JF, Jiang H, Packard AB, DeGrado TR (2014) Cyclotron production of 68Ga via the 68Zn(p, n)68Ga reaction in aqueous solution. Am J Nucl Med Mol Imaging 4:303–310

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Oehlke E, Hoehr C, Hou XC, Hanemaayer V, Zeisler S, Adam MJ, Ruth TJ, Celler A, Buckley K, Benard F, Schaffer P (2015) Production of 86Y and other radiometals for research purposes using a solution target system. Nucl Med Biol 42:842–849

    CAS  PubMed  Google Scholar 

  50. Alves F, Alves VHP, Do Carmo SJC, Neves ACB, Silva M, Abrunhosa AJ (2017) Production of copper-64 and gallium-68 with a medical cyclotron using liquid targets. Mod Phys Letters 32, No17:1740013 (21 pages)

    CAS  Google Scholar 

  51. Pandey MK, Byrne JF, Shlasner KN, Schmit NR, DeGrado TR (2019) Cyclotron production of 68Ga in a liquid target: effects of solution composition and irradiation parameters. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2019.03.002

    Article  PubMed  Google Scholar 

  52. Lahiri S, Banerjee S, Das NR (1997) Simultaneous production of carrier-free 65Zn and 66,67,68Ga in alpha-particle activated copper target and their separation with TOA. Appl Radiat Isot 48:15–18

    CAS  Google Scholar 

  53. Lahiri S, Banerjee S, Das NR (1997) Separation of carrier free 65Zn and 66,67,68Ga, the alpha-particle activation products of copper with HDEHP. J Radioanal Nucl Chem 218:215–218

    CAS  Google Scholar 

  54. Zweit J, Sharma H, Downey S (1987) Production of gallium-66, a short-lived, positron emitting radionuclide. Appl Radiat Isot 38:499–501

    CAS  Google Scholar 

  55. Silvester DJ, Thakur ML (1970) Cyclotron production of carrier-free gallium-67. Int J Appl Radiat Isot 21:630–631

    CAS  PubMed  Google Scholar 

  56. Mamtimin M, Harmon F, Starovoitova VN (2015) 47Sc production from titanium targets using electron linacs. Appl Radiat Isot 102:1–4

    CAS  PubMed  Google Scholar 

  57. Handbook on Photonuclear Data for Applications: Cross sections and Spectra (2000) IAEA-TECDOC-1178, IAEA, Vienna, Austria

  58. Starovoitova VN, Cole PL, Grimm TL (2015) Accelerator-based photoproduction of promising beta-emitters 67Cu and 47Sc. J Radioanal Nucl Chem 305:127–132

    CAS  Google Scholar 

  59. Starovoitova VN, Tchelidze L, Wells DP (2014) Production of medical radioisotopes with linear accelerators. Appl Radiat Isot 131:77–82

    Google Scholar 

  60. Rotsch D, Brown MA, Nolen JA, Brossard T, Henning WF, Chemerisov SD, Gromov RG, Greene J (2018) Electron linear accelerator production and purification of scandium-47 from titanium dioxide targets. Appl Radiat Isot 131:77–82

    CAS  PubMed  Google Scholar 

  61. Yagi M, Kondo K (1978) Preparation of carrier-free 67Cu by the 68Zn(γ, p) reaction. Int J Appl Radiat Isot 29:757–759

    CAS  Google Scholar 

  62. Danon Y, Block RC, Testa R, Moore H (2008) Medical isotope production using a 60 MeV linear electron accelerator. Trans Am Nucl Soc 98:894–895

    Google Scholar 

  63. Ayzatsky NI, Dikiy NP, Dovbnya AN, Lyashko YV, Nikiforov VI, Tenishev AE, Torgovin AV, Uvarov VL, Shramenko BI, Ehst D (2008) Feature of 67Cu photonuclear production. Probl At Sci Technol 49:174–178

    Google Scholar 

  64. Ayzatsky NI, Dikiy NP, Dovbnya AN, Dolzhek MA, Lyashko YV, Medvedeva EP, Medvedev DV (2014) Photonuclear method of production of 67Cu. Probl At Sci Technol 49:182–185

    Google Scholar 

  65. Gopalakrishna A, Suryanarayana SV, Naik H, Dixit TS, Nayak BK, Kumar A, Maletha P, Thakur K, Deshpande A, Krishnan R, Kamaldeep Banerjee S, Saxena A (2018) Production, separation and supply prospects of 67Cu with the development of fast neutron sources and photonuclear technology. Radiochim Acta 106:549–557

    CAS  Google Scholar 

  66. Aliev RA, Belyshev SS, Kuznetsov AA, Dzhilavyan LZ, Khankin VV, Aleshin GY, Kazakov AG, Priselkova AB, Kalmykov SN, Ishkhanov BS (2019) Photonuclear production and radiochemical separation of medically relevant radionuclides: 67Cu. J Radioanal Nucl Chem 321:125–132

    CAS  Google Scholar 

  67. Rotsch D, Nolen J (2018) Radioisotope research and production program, Argonne National Laboratory, Newsletter. www.anl.gov

  68. Kawabata M, Hashimoto K, Saeki H, Sato N, Motoishi S, Takakura K, Konno C, Nagai Y (2015) Production and separation of 64Cu and 67Cu using 14 MeV neutrons. J Radioanal Nucl Chem 303:1205–1209

    CAS  Google Scholar 

  69. Spahn I, Coenen HH, Qaim SM (2004) Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim Acta 92:183–186

    CAS  Google Scholar 

  70. Al-Abyad M, Spahn I, Sudár S, Morsy M, Comsan MNH, Csikai J, Qaim SM, Coenen HH (2006) Nuclear data for production of the therapeutic radionuclides 32P, 64Cu, 67Cu, 89Sr, 90Y and 153Sm via the (n, p) reaction: evaluation of excitation function and its validation via integral cross-section measurement using a 14 MeV d(Be) neutron source. Appl Radiat Isot 64:717–724

    CAS  PubMed  Google Scholar 

  71. Qaim SM, Wölfle R (1978) Triton emission in the interactions of fast neutrons with nuclei. Nucl Phys A 295:150–162

    Google Scholar 

  72. Qaim SM, Wu CH, Wölfle R (1983) 3He-particle emission in fast neutron induced reactions. Nucl Phys A 410:421–428

    Google Scholar 

  73. Wölfle R, Khatun S, Qaim SM (1984) Triton emission cross sections with 30 MeV d(Be) breakup neutrons. Nucl Phys A 423:130–138

    Google Scholar 

  74. Wölfle R, Sudár S, Qaim SM (1985) Determination of excitation function of triton emission reaction on aluminium from threshold up to 30 MeV via activation in diverse neutron fields and unfolding code calculations. Nucl Sci Eng 91:162–172

    Google Scholar 

  75. Qaim SM (1987) d/Be neutron fields and their applications in nuclear reaction cross section studies. In: Proceedings of IAEA Advisory Group meeting on properties of neutron sources, Leningrad, 1986, IAEA-TECDOC-410:90-98

  76. Ibn Majah M, Chiadli A, Sudár S, Qaim SM (2001) Cross sections of (n, p), (n, alpha) and (n,2n) reactions on some isotopes of zirconium in the neutron energy range of 10–12 MeV and integral tests of differential cross section data using a 14 MeV d(Be) neutron spectrum. Appl Radiat Isot 54:655–662

    CAS  PubMed  Google Scholar 

  77. Koning AJ, Rochman D, Kopecký J, Sublet J-Ch, Bauge E, Hilaire S, Romain P, Morillon B, Duarte H, van der Marck S, Pomp S, Sjostrand H, Forrest RA, Henriksson H, Cabellos O, Goriely S, Leppanen J, Leeb H, Plompen A, Mills RW (2017) TENDL-2017: TALYS-based evaluated nuclear data library tendl. https://web.psi.ch/tendl_2017/tendl2017.html

  78. Qaim SM (1982) A systematic study of (n, d), n, nʹp) and (n, pn) ractions at 14.7 MeV. Nucl Phys A 382:255–268

    Google Scholar 

  79. Sato N, Tsukada K, Watanabe S, Ishioka NS, Kawabata M, Saeki H, Nagai Y, Kin T, Minato F, Iwamoto N, Iwamoto O (2014) First measurement of the radionuclide purity of the therapeutic isotope 67Cu produced by 68Zn(n, x) reaction using natC(d, n) neutrons. J Phys Soc Jpn 83:073201

    Google Scholar 

  80. Sugo Y, Hashimoto K, Kawabata M, Saeki H, Sato S, Tsukada K, Nagai Y (2017) Application of 67Cu produced by 68Zn(n, n’p + d)67Cu to biodistribution study in tumor-bearing mice. J Phys Soc Jpn 86:023201

    Google Scholar 

  81. Qaim SM, Khatun S, Wölfle R (1980) Integral cross section measurements of (n,x) reactions induced by 30 MeV d(Be) breakup neutrons on FRT wall and structural materials. In: Proceedings of symposium on neutron cross sections from 10 to 50 MeV, Brookhaven National Laboratory, May 1980, BNL-NCS-51245. pp 536–552

  82. DeLorme K, Engle J, Kowash B, Nortier F, Birnbaum E, McHale S, Clinton J, John K, Jackman K, Marus L (2014) Production potential of 47Sc using spallation neutrons at the Los Alamos isotope production facility. J Nucl Med 55(Supplement 1):1468

    Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Prof. B. Neumaier for his active support of the work on metallic radionuclides, and Drs. B. Scholten and I. Spahn for useful discussions. S. Spellerberg assisted skilfully in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed M. Qaim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Based on a plenary lecture given at the Second International Conference on Radioanalytical and Nuclear Chemistry, Budapest, May 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qaim, S.M. Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 322, 1257–1266 (2019). https://doi.org/10.1007/s10967-019-06797-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06797-y

Keywords

Navigation