Skip to main content
Log in

Production of 47Sc with natural vanadium targets: results of the PASTA project

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 22 May 2021

This article has been updated

Abstract

The goal of PASTA project (acronym for production with accelerator of 47Sc for theranostic applications) is the determination of excitation functions associated to several nuclear reactions, aimed at yielding the theranostic radionuclide 47Sc. This work reports the main results obtained by irradiating natural vanadium targets with proton beams up to 70 MeV. Particular care is also given to the co-production of 46Sc, the only isotopic contaminant with half-life longer than 47Sc. Experimental results are compared with theoretical studies by means of known nuclear reaction software tools that are publicly available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Qaim SM, Scholten B, Neumaier B (2018) J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6238-x

    Article  Google Scholar 

  2. IAEA, CRP on therapeutic radiopharmaceuticals labelled with new emerging radionuclides (67Cu, 186Re, 47Sc), No. F22053, 2016-2020. http://cra.iaea.org/cra/explore-crps/all-active-by-programme.html

  3. Müller C, Domnanich KA, Umbricht CA, Van Der Meulen NP (2018) Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical applications. Br J Radiol. https://doi.org/10.1259/bjr.20180074

    Article  PubMed  PubMed Central  Google Scholar 

  4. Champion C, Quinto MA, Morgat C, Zanotti-Fregonara P, Hindié E (2016) Comparison between three promising ß-emitting radionuclides, 67Cu, 47Sc and 161Tb, with emphasis on doses delivered to minimal residual disease. Theranostics. https://doi.org/10.7150/thno.15132

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boschi A, Martini P, Costa V, Pagnoni A, Uccelli L (2019) Interdisciplinary tasks in the cyclotron production of radiometals for medical applications. The case of 47Sc as example. Molecules. https://doi.org/10.3390/molecules24030444

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huclier-Markai S, Alliot C, Kerdjoudj R, Mougin-Degraef M, Chouin N, Haddad F (2018) Promising scandium radionuclides for nuclear medicine: a review on the production and chemistry up to in vivo proofs of concept. Cancer Biother Radio. https://doi.org/10.1089/cbr.2018.2485

    Article  Google Scholar 

  7. Esposito J et al (2019) LARAMED: a laboratory for radioisotopes of medical interest. Molecules. https://doi.org/10.3390/molecules24010020

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haddad F et al (2008) ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine. Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-008-0802-5

    Article  Google Scholar 

  9. Koning AJ, Hilarie S, Duijvesijn MC (2008) TALYS.1.0. In: Proceeding of the international conference on nuclear data for science and technology, April 22–27, 2007, Nice, France, EDP Sciences, p 211

  10. Herman M et al (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108:2655

    Article  CAS  Google Scholar 

  11. Boehlen TT et al (2014) The FLUKA code: developments and challanges for high energy and medical applications. Nucl Data Sheets 120:211

    Article  Google Scholar 

  12. Pupillo G et al (2018) New production cross sections for the theranostic radionuclide 67Cu. Nuclear Instr Methods Phys Res B. https://doi.org/10.1016/j.nimb.2017.10.022

    Article  Google Scholar 

  13. IAEA Monitor Reactions (2017) https://www-nds.iaea.org/medical/monitor_reactions.html. Accessed Mar 2019

  14. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM—the stopping and range of ions in matter. Nuclear Instr Methods Phys Res B 268:1818–1823

    Article  CAS  Google Scholar 

  15. Otuka N et al (2017) Uncertainty propagation in activation cross section measurements. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2017.01.013

    Article  Google Scholar 

  16. National Nuclear Data Center (NNDC), NuDat 2.7 database. https://www.nndc.bnl.gov/. Accessed Mar 2019

  17. Experimental Nuclear Reaction Data (EXFOR). https://www-nds.iaea.org/exfor/exfor.htm. Accessed Mar 2019

  18. Duchemin C, Guertin A, Haddad F, Michel N, Métivier V (2015) Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys Med Biol. https://doi.org/10.1088/0031-9155/60/3/931

    Article  PubMed  Google Scholar 

  19. Koning AJ, Delaroche JP (2003) Local and global nucleon optical models from 1 keV to 200 MeV. Nucl Phys A 713:231

    Article  Google Scholar 

  20. Avrigeanu V, Hodgson PE, Avrigeanu M (1994) Global optical potentials for emitted alpha particles. Phys Rev C 49:2136

    Article  CAS  Google Scholar 

  21. Avrigeanu V et al (2014) Further explorations of the α-particle optical model potential at low energies for the mass range A ≈ 45–209. Phys Rev C 90:044612

    Article  CAS  Google Scholar 

  22. Capote R et al (2009) Reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl Data Sheets 110:3107–3214

    Article  CAS  Google Scholar 

  23. Koning A, Hilaire S, Goriely S (2017) TALYS-1.9 user manual

  24. Ferrari A and Sala PR (1998) The physics of high energy reactions. In: Gandini A, Reffo G (eds) Proceedings of the workshop on nuclear reaction data and nuclear reactors physics, design and safety, International Centre for Theoretical Physics, Miramare-Trieste, Italy, 15 April–17 May 1996. World Scientific, p 424

  25. Heininger CG and Wiig EO (1956) Spallation of Vanadium with 60-, 100-, 175-, and 240-MeV protons. Phys Rev 101:1074

    Article  CAS  Google Scholar 

  26. Michel R, Brinkmann G, Weigel H and Herr W (1979) Measurement and hybrid-model analysis of proton-induced reactions with V, Fe, and Co. Nucl Phys, Sect A 322:40

    Article  Google Scholar 

  27. Levkovski VN (1991) Activation cross sections by protons and alphas, Moscow, USSR

  28. Ditrói F, Tárkányi F, Takács S, Hermanne A (2016) Nuclear Instr Methods Phys Res B 381:16–28

    Article  Google Scholar 

  29. Michel R, Stueck R, Peiffer F (1985) Proton-induced reaction on Ti, V, Mn, Fe, Co and Ni. Nucl Phys, Sect A 441:617

    Article  Google Scholar 

  30. Tobailem J and de Lassus St. Genies CH (1975) report CEA-N-1466(3)

  31. Albouy G, Cohen JP, Gusakow M, Poffe N, Sergolle H and Valentin L (1963) Reaction (p,3n+3p) between 30 and 150 MeV. J de Physique 24:67

Download references

Acknowledgements

The authors thanks Dr. R. Capote, Dr. M. W. Herman, and Dr. Carlos Rossi Alvarez for private communications and the enlightening scientific discussion. This work has been partially supported by EU Horizon 2020 Project RIA-ENSAR2 (654 02) and by a Grant from the French National Agency for Research called “Investissements d’Avenir”, Equipex Arronax-Plus noANR-11-EQPX-0004, Labex IRON noANR-11-LABX-18-01 and noANR-16-IDEX-0007.

Funding

Funding was provided by Istituto Nazionale di Fisica Nucleare CSN5 with the Grant PASTA (Bando Giovani Ricercatori No. 18203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaia Pupillo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupillo, G., Mou, L., Boschi, A. et al. Production of 47Sc with natural vanadium targets: results of the PASTA project. J Radioanal Nucl Chem 322, 1711–1718 (2019). https://doi.org/10.1007/s10967-019-06844-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06844-8

Keywords

Navigation