Skip to main content

Advertisement

Log in

Breast Cancer Response to Therapy: Can microRNAs Lead the Way?

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

A Correction to this article was published on 15 February 2021

This article has been updated

Abstract

Breast cancer (BC) is a leading cause of death among women with malignant diseases. The selection of adequate therapies for highly invasive and metastatic BCs still represents a major challenge. Novel combinatorial therapeutic approaches are urgently required to enhance the efficiency of BC treatment. Recently, microRNAs (miRNAs) emerged as key regulators of the complex mechanisms that govern BC therapeutic resistance and susceptibility. In the present review we aim to critically examine how miRNAs influence BC response to therapies, or how to use miRNAs as a basis for new therapeutic approaches. We summarized recent findings in this rapidly evolving field, emphasizing the challenges still ahead for the successful implementation of miRNAs into BC treatment while providing insights for future BC management.

The goal of this review was to propose miRNAs, that might simultaneously improve the efficacy of all four therapies that are the backbone of current BC management (radio-, chemo-, targeted, and hormone therapy). Among the described miRNAs, miR-21 and miR-16 emerged as the most promising, closely followed by miR-205, miR-451, miR-182, and miRNAs from the let-7 family. miR-21 inhibition might be the best choice for future improvement of invasive BC treatment.

New therapeutic strategies of miRNA-based agents alongside current standard treatment modalities could greatly benefit BC patients. This review represents a guideline on how to navigate this elaborate puzzle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

BC:

Breast cancer

miRNA:

MircoRNA

HER2:

Human epidermal growth factor receptor 2

ER:

Estrogen receptor

PR:

Progesterone receptor

TNBC:

Triple-negative breast cancer

3′UTR:

3´untranslated region

mRNA:

Messenger RNA

EGFR:

Epidermal growth factor receptor

TIMP3:

Tissue inhibitor of metalloproteinases-3

PDCD4:

Programmed cell death protein 4

PTEN:

Phosphatase and tensin homolog

TPM1:

Tropomyosin 1

IL-6:

Interleukin-6

CDKN1B:

Cyclin-dependent kinase inhibitor 1B

FOXO3:

Forkhead box O3

BIM:

Bcl-2-like protein 11

BCS:

Breast-conserving surgery

RT:

Radiotherapy

DSBs:

Double-stranded DNA brakes

IR:

Irradiation

SSB:

Single stranded brake

DDR:

DNA damage response

ROS:

Reactive oxygen species

PARP1:

Poly [ADP-ribose] polymerase 1

CHK:

Checkpoint kinase

BRCA1/2:

Breast cancer type 1/2 susceptibility protein

DNA-PKcs:

DNA-dependent protein kinase

BCL-2:

B-cell lymphoma 2

VEGF:

Vascular endothelial growth factor

PI3K:

Phosphoinositide 3-kinases

CDC27:

Cell division cycle protein 27 homolog

NSCLC:

Non-small cell lung cancer

mTOR:

Mammalian target of rapamycin

HR:

Homologous recombination

ZEB1:

Zinc finger E-box-binding homeobox 1

TBK1:

TANK-binding kinase 1

HR+:

Hormone receptor-positive

ADAM22:

A disintegrin and metalloproteinase 22

WBP2:

WW domain binding protein 2

UCP2:

Uncoupling protein 2

EMT:

Epithelial-mesenchymal transition

ERK1/2:

Extracellular signal‑regulated protein kinase

IGF1R:

Insulin-like growth factor 1 receptor

PD-L1:

Programmed death-ligand 1

NF-κB:

Nuclear factor kappa B

DCTD:

Deoxycytidine monophosphate deaminase

BAX:

Bcl-2-associated X protein

NLK:

Nemo-like kinase

Wip1:

Wildtype p53-induced phosphatase 1

BNIP3:

BCL2 interacting protein 3

DAPK2:

Death-associated protein kinase 2

PBMCs:

Peripheral blood mononuclear cells

CRISPR-Cas 9:

Clustered regularly interspaced short palindromic repeats-associated protein 9

References:

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    PubMed  Google Scholar 

  2. Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin Med Insights Pathol. 2015;8:23–31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees C a, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

  4. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thürlimann B, et al. Personalizing the treatment of women with early breast cancer: Highlights of the st gallen international expert consensus on the primary therapy of early breast Cancer 2013. Ann Oncol. 2013;24:2206–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yersal O, Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol. 2014;5:412–24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fallahpour S, Navaneelan T, De P, Borgo A. Breast cancer survival by molecular subtype: a population-based analysis of cancer registry data. C Open. 2017;5:E734–9.

    Article  Google Scholar 

  8. Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006;94:776–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Anglicheau D, Muthukumar T, Suthanthiran M. MicroRNAs: small RNAs with big effects. Transplant J. 2010;90:105–12.

    Article  CAS  Google Scholar 

  10. Hashimoto Y, Akiyama Y, Yuasa Y. Multiple-to-multiple relationships between microRNAs and target genes in gastric cancer. Suzuki H, editor. PLoS One. 2013;8:e62589.

  11. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9.

  12. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76:3666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Petrovic N, Ergün S, Isenovic ER. Levels of microRNA heterogeneity in cancer biology. Mol Diagn Ther. 2017;21:511–23.

    Article  CAS  PubMed  Google Scholar 

  14. Ji W, Sun B, Su C. Targeting microRNAs in cancer gene therapy. Genes (Basel). 2017;8:21.

    Article  Google Scholar 

  15. Petrovic N, Ergun S. miRNAs as potential treatment targets and treatment options in cancer. Mol Diagn Ther. 2018;22:157–68.

    Article  CAS  PubMed  Google Scholar 

  16. Oztemur Islakoglu Y, Noyan S, Aydos A, Gur DB. Meta-microRNA biomarker signatures to classify breast cancer subtypes. Omi A J Integr Biol. 2018;22:709–16.

    Article  CAS  Google Scholar 

  17. Hamam R, Hamam D, Alsaleh KA, Kassem M, Zaher W, Alfayez M, et al. Circulating microRNAs in breast cancer: novel diagnostic and prognostic biomarkers. Cell Death Dis. 2017;8:e3045–e3045.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ. Let ‐ 7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med. 2019;8.

  19. Huang E, Liu R, Chu Y. miRNA-15a/16: as tumor suppressors and more. Futur Oncol. 2015;11:2351–63.

    Article  CAS  Google Scholar 

  20. Rekker K, Saare M, Roost AM, Salumets A, Peters M. Circulating microRNA Profile throughout the Menstrual Cycle. Wolfe A, editor. PLoS One. 2013;8:e81166.

  21. Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer S Bin. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer. 2017;17:799.

  22. Rinnerthaler G, Hackl H, Gampenrieder S, Hamacher F, Hufnagl C, Hauser-Kronberger C, et al. miR-16-5p is a stably-expressed housekeeping microRNA in breast cancer tissues from primary tumors and from metastatic sites. Int J Mol Sci. 2016;17:156.

    Article  PubMed Central  Google Scholar 

  23. Davoren PA, McNeill RE, Lowery AJ, Kerin MJ, Miller N. Identification of suitable endogenous control genes for microRNA gene expression analysis in human breast cancer. BMC Mol Biol. 2008;9:76.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Petrović N, Mandušić V, Stanojević B, Lukić S, Todorović L, Roganović J, et al. The difference in miR-21 expression levels between invasive and non-invasive breast cancers emphasizes its role in breast cancer invasion. Med Oncol. 2014;31:867.

    Article  PubMed  Google Scholar 

  25. Petrović N. miR-21 might be involved in breast cancer promotion and invasion rather than in initial events of breast cancer development. Mol Diagn Ther. 2016;20:97–110.

    Article  PubMed  Google Scholar 

  26. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.

    Article  CAS  PubMed  Google Scholar 

  27. Quan Y, Huang X, Quan X. Expression of miRNA‑206 and miRNA‑145 in breast cancer and correlation with prognosis. Oncol Lett. 2018;

  28. Adams BD, Cowee DM, White BA. The role of miR-206 in the epidermal growth factor (EGF) induced repression of estrogen receptor-α (ERα) signaling and a luminal phenotype in MCF-7 breast cancer cells. Mol Endocrinol. 2009;23:1215–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol. 2011;8:706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng YH, Tsao CJ. Emerging role of microRNA-21 in cancer. Biomed Reports. 2016;5:395–402.

    Article  CAS  Google Scholar 

  31. Petrović N, Mandušić V, Dimitrijević B, Roganović J, Lukić S, Todorović L, et al. Higher miR-21 expression in invasive breast carcinomas is associated with positive estrogen and progesterone receptor status in patients from Serbia. Med Oncol. 2014;31:977.

    Article  PubMed  Google Scholar 

  32. Petrović N, Kolaković A, Stanković A, Lukić S, Řami A, Ivković M, et al. miR-155 expression level changes might be associated with initial phases of breast cancer pathogenesis and lymph-node metastasis. Cancer Biomarkers. 2016;16:385–94.

    Article  PubMed  Google Scholar 

  33. Qi L, Bart J, Tan LP, Platteel I, van der Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9:163.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Song B, Wang C, Liu J, Wang X, Lv L, Wei L, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 2010;29:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jiang LP, He CY, Zhu ZT. Role of microRNA-21 in radiosensitivity in non-small cell lung cancer cells by targeting PDCD4 gene. Oncotarget. 2017;8:23675–89.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rask L, Balslev E, Søkilde R, Høgdall E, Flyger H, Eriksen J, et al. Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol. 2014;37:215–27.

    Article  CAS  Google Scholar 

  38. Xiao, Humphries, Yang, Wang. MiR-205 dysregulations in breast cancer: the complexity and opportunities. Non-Coding RNA. 2019;5:53.

  39. Qin AY, Zhang XW, Liu L, Yu JP, Li H, Emily Wang SZ, et al. MiR-205 in cancer: An angel or a devil? Eur J Cell Biol. 2013;92:54–60.

    Article  CAS  PubMed  Google Scholar 

  40. Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27 kip1. J Biol Chem. 2008;283:29897–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Di Leva G, Gasparini P, Piovan C, Ngankeu A, Garofalo M, Taccioli C, et al. MicroRNA cluster 221–222 and estrogen receptor α interactions in breast cancer. JNCI J Natl Cancer Inst. 2010;102:706–21.

    Article  PubMed  Google Scholar 

  42. Wang W, Zhang L, Wang Y, Ding Y, Chen T, Wang Y, et al. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis. 2017;8:e3071.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Langlands FE, Horgan K, Ddodwell D, Smith L. Breast cancer subtypes: Response to radiotherapy and potential radiosensitisation. Br J Radiol. 2013;86:1–10.

    Article  Google Scholar 

  44. West CM, Barnett GC. Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 2011. p. 3.

  45. Czochor JR, Glazer PM. MicroRNAs in cancer cell response to ionizing radiation. Antioxid Redox Signal. 2014;21:293–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Metheetrairut C, Slack FJ. MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev. 2013;23:12–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kraemer A, Anastasov N, Angermeier M, Winkler K, Atkinson MJ, Moertl S. MicroRNA-mediated processes are essential for the cellular radiation response. Radiat Res. 2011;176:575.

    Article  CAS  PubMed  Google Scholar 

  48. Zhu W, Liu M, Fan Y, Ma F, Xu N, Xu B. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med. 2018;7:4420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41:210–20.

    Article  CAS  PubMed  Google Scholar 

  50. Troschel FM, Böhly N, Borrmann K, Braun T, Schwickert A, Kiesel L, et al. miR-142-3p attenuates breast cancer stem cell characteristics and decreases radioresistance in vitro. Tumor Biol. 2018;40:101042831879188.

    Article  Google Scholar 

  51. Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, et al. miRNA-95 mediates radioresistance in tumors by targeting the sphingolipid phosphatase SGPP1. Cancer Res. 2013;73:6972–86.

    Article  CAS  PubMed  Google Scholar 

  52. Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, et al. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget. 2015;6:22439–51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Han J. MiR-27a Modulates Radiosensitivity of Triple-Negative Breast Cancer (TNBC) Cells by Targeting CDC27. Med Sci Monit. 2015;21:1297–303.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luo M, Ding L, Li Q, Yao H. miR-668 enhances the radioresistance of human breast cancer cell by targeting IκBα. Breast Cancer. 2017;24:673–82.

    Article  PubMed  Google Scholar 

  55. Anastasov N, Höfig I, Vasconcellos IG, Rappl K, Braselmann H, Ludyga N, et al. Radiation resistance due to high expression of miR-21 and G2/M checkpoint arrest in breast cancer cells. Radiat Oncol. 2012;7:206.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bonetti P, Climent M, Panebianco F, Tordonato C, Santoro A, Marzi MJ, et al. Dual role for miR-34a in the control of early progenitor proliferation and commitment in the mammary gland and in breast cancer. Oncogene. 2019;38:360–74.

    Article  CAS  PubMed  Google Scholar 

  57. Lacombe J, Zenhausern F. Emergence of miR-34a in radiation therapy. Crit Rev Oncol Hematol. 2017;109:69–78.

    Article  PubMed  Google Scholar 

  58. Halimi M, Shahabi A, Moslemi D, Parsian H, Asghari SM, Sariri R, et al. Human serum miR-34a as an indicator of exposure to ionizing radiation. Radiat Environ Biophys. 2016;55:423–9.

    Article  CAS  PubMed  Google Scholar 

  59. Mei Z, Su T, Ye J, Yang C, Zhang S, Xie C. The miR-15 family enhances the radiosensitivity of breast cancer cells by targeting G2 checkpoints. Radiat Res. 2015;183:196–207.

    Article  CAS  PubMed  Google Scholar 

  60. Song L, Lin C, Wu Z, Gong H, Zeng Y, Wu J, et al. miR-18a impairs DNA damage response through downregulation of ataxia telangiectasia mutated (ATM) kinase. Gaetano C, editor. PLoS One. 2011;6:e25454.

  61. Leung CM, Chen TW, Li SC, Ho MR, Hu LY, Liu WS, et al. MicroRNA expression profiles in human breast cancer cells after multifraction and single-dose radiation treatment. Oncol Rep. 2014;31:2147–56.

    Article  CAS  PubMed  Google Scholar 

  62. Sun H, Ding C, Zhang H, Gao J. Let-7 miRNAs sensitize breast cancer stem cells to radiation-induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway. Mol Med Rep. 2016;14:3285–92.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang J, Cui Y, Lin X, Zhang G, Li Z. MiR-122-3p sensitizes breast cancer cells to ionizing radiation via controlling of cell apoptosis, migration and invasion. Int J Clin Exp Pathol. 2017;10:215–23.

    CAS  Google Scholar 

  64. Pajic M, Froio D, Daly S, Doculara L, Millar E, Graham PH, et al. miR-139-5p modulates radiotherapy resistance in breast cancer by repressing multiple gene networks of DNA repair and ROS defense. Cancer Res. 2018;78:501–15.

    Article  CAS  PubMed  Google Scholar 

  65. Gasparini P, Lovat F, Fassan M, Casadei L, Cascione L, Jacob NK, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci. 2014;111:4536–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petrovic N, Davidovic R, Bajic V, Obradovic M, Isenovic RE. MicroRNA in breast cancer: The association with BRCA1/2. Cancer Biomarkers. 2017;19:119–28.

    Article  CAS  PubMed  Google Scholar 

  67. Liang Z, Ahn J, Guo D, Votaw JR, Shim H. MicroRNA-302 replacement therapy sensitizes breast cancer cells to ionizing radiation. Pharm Res. 2013;30:1008–16.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang P, Wang L, Rodriguez-Aguayo C, Yuan Y, Debeb BG, Chen D, et al. miR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nat Commun. 2014;5:5671.

    Article  CAS  PubMed  Google Scholar 

  69. Chen Y, Sun Y, Chen L, Xu X, Zhang X, Wang B, et al. miRNA-200c increases the sensitivity of breast cancer cells to doxorubicin through the suppression of E-cadherin-mediated PTEN/Akt signaling. Mol Med Rep. 2013;7:1579–84.

    Article  CAS  PubMed  Google Scholar 

  70. Małachowska B, Tomasik B, Stawiski K, Kulkarni S, Guha C, Chowdhury D, et al. Circulating microRNAs as biomarkers of radiation exposure: a systematic review and meta-analysis. Int J Radiat Oncol. 2020;106:390–402.

    Article  Google Scholar 

  71. Tong CWS, Wu M, Cho WCS, To KKW. Recent advances in the treatment of breast cancer. Front Oncol. 2018;8.

  72. Reinert T, Barrios CH. Optimal management of hormone receptor positive metastatic breast cancer in 2016. Ther Adv Med Oncol. 2015;7:304–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee CI, Goodwin A, Wilcken N. Fulvestrant for hormone-sensitive metastatic breast cancer. Cochrane Database Syst Rev. 2017;

  74. El Sayed R, El Jamal L, El Iskandarani S, Kort J, Abdel Salam M, Assi H. Endocrine and targeted therapy for hormone-receptor-positive, HER2-negative advanced breast cancer: insights to sequencing treatment and overcoming resistance based on clinical trials. Front Oncol. 2019;9.

  75. Waks AG, Winer EP. Breast Cancer Treatment: A Review. JAMA - J Am Med Assoc. 2019;321:288–300.

    Article  CAS  Google Scholar 

  76. Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE. Oncogenic HER2Δ16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis. 2010;31:2049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, Meijer-van Gelder ME, de Weerd V, et al. MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Res Treat. 2011;127:43–51.

    Article  PubMed  Google Scholar 

  78. Jansen MPHM, Reijm EA, Sieuwerts AM, Ruigrok-Ritstier K, Look MP, Rodríguez-González FG, et al. High miR-26a and low CDC2 levels associate with decreased EZH2 expression and with favorable outcome on tamoxifen in metastatic breast cancer. Breast Cancer Res Treat. 2012;133:937–47.

    Article  CAS  PubMed  Google Scholar 

  79. Young J, Kawaguchi T, Yan L, Qi Q, Liu S, Takabe K. Tamoxifen sensitivity-related microRNA-342 is a useful biomarker for breast cancer survival. Oncotarget. 2017;8:99978–89.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mehrgou A, Akouchekian M. Therapeutic impacts of microRNAs in breast cancer by their roles in regulating processes involved in this disease. J Res Med Sci. 2017;22:130.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Li J, Lu M, Jin J, Lu X, Xu T, Jin S. miR-449a suppresses tamoxifen resistance in human breast cancer cells by targeting ADAM22. Cell Physiol Biochem. 2018;50:136–49.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao Y, Deng C, Lu W, Xiao J, Ma D, Guo M, et al. Let-7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor α signaling in breast cancer. Mol Med. 2011;17:1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun X, Xu C, Tang SC, Wang J, Wang H, Wang P, et al. Let-7c blocks estrogen-activated Wnt signaling in induction of self-renewal of breast cancer stem cells. Cancer Gene Ther. 2016;23:83–9.

    Article  CAS  PubMed  Google Scholar 

  84. Ren Y, Wang H, Zhang Y, Liu Y. WBP2 modulates G1/S transition in ER+ breast cancer cells and is a direct target of miR-206. Cancer Chemother Pharmacol. 2017;79:1003–11.

    Article  CAS  PubMed  Google Scholar 

  85. Yu X, Luo A, Liu Y, Wang S, Li Y, Shi W, et al. miR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy. Mol Cancer. 2015;14:208.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Ward A, Balwierz A, Zhang JD, Küblbeck M, Pawitan Y, Hielscher T, et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer. Oncogene. 2013;32:1173–82.

    Article  CAS  PubMed  Google Scholar 

  87. Fu H, Fu L, Xie C, Zuo WS, Liu YS, Zheng MZ, et al. miR-375 inhibits cancer stem cell phenotype and tamoxifen resistance by degrading HOXB3 in human ER-positive breast cancer. Oncol Rep. 2017;37:1093–9.

    Article  CAS  PubMed  Google Scholar 

  88. Rao X, Di Leva G, Li M, Fang F, Devlin C, Hartman-Frey C, et al. MicroRNA-221/222 confers breast cancer fulvestrant resistance by regulating multiple signaling pathways. Oncogene. 2011;30:1082–97.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang HY, Liang F, Zhang JW, Wang F, Wang L, Kang XG. Effects of long noncoding RNA-ROR on tamoxifen resistance of breast cancer cells by regulating microRNA-205. Cancer Chemother Pharmacol. 2017;79:327–37.

    Article  CAS  PubMed  Google Scholar 

  90. Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L, Bachelot T, et al. MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Res. 2015;17.

  91. Shi W, Gerster K, Alajez NM, Tsang J, Waldron L, Pintilie M, et al. MicroRNA-301 mediates proliferation and invasion in human breast cancer. Cancer Res. 2011;71:2926–37.

    Article  CAS  PubMed  Google Scholar 

  92. Yu X, Li R, Shi W, Jiang T, Wang Y, Li C, et al. Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother. 2016;77:37–44.

    Article  CAS  PubMed  Google Scholar 

  93. Ye P, Fang C, Zeng H, Shi Y, Pan Z, An N, et al. Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods. Oncol Lett. 2018;

  94. Manavalan TT, Teng Y, Appana SN, Datta S, Kalbfleisch TS, Li Y, et al. Differential expression of microRNA expression in tamoxifen-sensitive MCF-7 versus tamoxifen-resistant LY2 human breast cancer cells. Cancer Lett. 2011;313:26–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 2009;37:2584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maillot G, Lacroix-Triki M, Pierredon S, Gratadou L, Schmidt S, Benes V, et al. Widespread estrogen-dependent repression of microRNAs involved in breast tumor cell growth. Cancer Res. 2009;69:8332–40.

    Article  CAS  PubMed  Google Scholar 

  97. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009;37:4850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chang MS. Tamoxifen resistance in breast cancer. Biomol Ther. 2012;20:256–67.

    Article  CAS  Google Scholar 

  99. Nagaraj G, Ma C. Revisiting the estrogen receptor pathway and its role in endocrine therapy for postmenopausal women with estrogen receptor-positive metastatic breast cancer. Breast Cancer Res Treat. 2015;150:231–42.

    Article  CAS  PubMed  Google Scholar 

  100. Gong C, Yao Y, Wang Y, Liu B, Wu W, Chen J, et al. Up-regulation of miR-21 mediates resistance to trastuzumab therapy for breast cancer. J Biol Chem. 2011;286:19127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A, et al. Up-regulation of miR-21 by HER2/ neu Signaling Promotes Cell Invasion. J Biol Chem. 2009;284:18515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ninio-Many L, Hikri E, Burg-Golani T, Stemmer SM, Shalgi R, Ben-Aharon I. miR-125a induces HER2 expression and sensitivity to trastuzumab in triple-negative breast cancer lines. Front Oncol. 2020;10.

  103. Noyan S, Gurdal H, Gur Dedeoglu B. Involvement of miR-770–5p in trastuzumab response in HER2 positive breast cancer cells. Ahmad A, editor. PLoS One. 2019;14:e0215894.

  104. Ma T, Yang L, Zhang J. MiRNA-542-3p downregulation promotes trastuzumab resistance in breast cancer cells via AKT activation. Oncol Rep. 2015;33:1215–20.

    Article  CAS  PubMed  Google Scholar 

  105. Lyu H, Huang J, He Z, Liu B. Targeting of HER3 with functional cooperative miRNAs enhances therapeutic activity in HER2-overexpressing breast cancer cells. Biol Proced Online. 2018;20:16.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liu B, Ordonez-Ercan D, Fan Z, Edgerton SM, Yang X, Thor AD. Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int J Cancer. 2007;120:1874–82.

    Article  CAS  PubMed  Google Scholar 

  107. Li H, Liu J, Chen J, Wang H, Yang L, Chen F, et al. A serum microRNA signature predicts trastuzumab benefit in HER2-positive metastatic breast cancer patients. Nat Commun. 2018;9:1614.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Venturutti L, Cordo Russo RI, Rivas MA, Mercogliano MF, Izzo F, Oakley RH, et al. MiR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast and gastric cancer via its novel targets CCNJ and FUBP1. Oncogene. 2016;35:6189–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Corcoran C, Rani S, Breslin S, Gogarty M, Ghobrial IM, Crown J, et al. miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Mol Cancer. 2014;13:71.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yue D, Qin X. miR-182 regulates trastuzumab resistance by targeting MET in breast cancer cells. Cancer Gene Ther. 2019;26:1–10.

    Article  CAS  PubMed  Google Scholar 

  111. Cornell L, Wander SA, Visal T, Wagle N, Shapiro GI. MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Rep. 2019;26(2667–2680):e7.

    Google Scholar 

  112. Lebert JM, Lester R, Powell E, Seal M, McCarthy J. Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol. 2018;25:S142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: Primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.

    Article  CAS  PubMed  Google Scholar 

  114. Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells. 2019;8:957.

    Article  PubMed Central  Google Scholar 

  115. Tormo E, Ballester S, Adam-Artigues A, Burgués O, Alonso E, Bermejo B, et al. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci Rep. 2019;9:5316.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Liu M, Gong C, Xu R, Chen Y, Wang X. MicroRNA-5195-3p enhances the chemosensitivity of triple-negative breast cancer to paclitaxel by downregulating EIF4A2. Cell Mol Biol Lett. 2019;24:47.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li Y, Liang Y, Sang Y, Song X, Zhang H, Liu Y, et al. MiR-770 suppresses the chemo-resistance and metastasis of triple negative breast cancer via direct targeting of STMN1. Cell Death Dis. 2018;9:14.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Tan X, Peng J, Fu Y, An S, Rezaei K, Tabbara S, et al. miR-638 mediated regulation of BRCA1affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16:435.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fan X, Zhou S, Zheng M, Deng X, Yi Y, Huang T. MiR-199a-3p enhances breast cancer cell sensitivity to cisplatin by downregulating TFAM (TFAM). Biomed Pharmacother. 2017;88:507–14.

    Article  CAS  PubMed  Google Scholar 

  120. Song H, Li D, Wu T, Xie D, Hua K, Hu J, et al. MicroRNA-301b promotes cell proliferation and apoptosis resistance in triple-negative breast cancer by targeting CYLD. BMB Rep. 2018;51:602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, et al. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res. 2017;19:133.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Wu C, Zhao A, Tan T, Wang Y, Shen Z. Overexpression of microRNA-620 facilitates the resistance of triple negative breast cancer cells to gemcitabine treatment by targeting DCTD. Exp Ther Med. 2019;18:550–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hou X, Niu Z, Liu L, Guo Q, Li H, Yang X, et al. miR‑1207‑5p regulates the sensitivity of triple‑negative breast cancer cells to Taxol treatment via the suppression of LZTS1 expression. Oncol Lett. 2018;

  124. Tang T, Cheng Y, She Q, Jiang Y, Chen Y, Yang W, et al. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother. 2018;107:338–46.

    Article  CAS  PubMed  Google Scholar 

  125. Ye Z, Hao R, Cai Y, Wang X, Huang G. Knockdown of miR-221 promotes the cisplatin-inducing apoptosis by targeting the BIM-Bax/Bak axis in breast cancer. Tumor Biol. 2016;37:4509–15.

    Article  CAS  Google Scholar 

  126. Niu J, Xue A, Chi Y, Xue J, Wang W, Zhao Z, et al. Induction of miRNA-181a by genotoxic treatments promotes chemotherapeutic resistance and metastasis in breast cancer. Oncogene. 2016;35:1302–13.

    Article  CAS  PubMed  Google Scholar 

  127. Sha LY, Zhang Y, Wang W, Sui X, Liu SK, Wang T, et al. MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmacol Sci. 2016;20:2201–8.

    PubMed  Google Scholar 

  128. Han B, Huang J, Han Y, Hao J, Wu X, Song H, et al. The microRNA miR-181c enhances chemosensitivity and reduces chemoresistance in breast cancer cells via down-regulating osteopontin. Int J Biol Macromol. 2019;125:544–56.

    Article  CAS  PubMed  Google Scholar 

  129. Ma MT, He M, Wang Y, Jiao XY, Zhao L, Bai XF, et al. MiR-487a resensitizes mitoxantrone (MX)-resistant breast cancer cells (MCF-7/MX) to MX by targeting breast cancer resistance protein (BCRP/ABCG2). Cancer Lett. 2013;339:107–15.

    Article  CAS  PubMed  Google Scholar 

  130. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol. 2010;79:817–24.

    Article  CAS  PubMed  Google Scholar 

  131. Kovalchuk O, Filkowski J, Meservy J, Ilnytskyy Y, Tryndyak VP, Chekhun VF, et al. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol Cancer Ther. 2008;7:2152–9.

    Article  CAS  PubMed  Google Scholar 

  132. Wu J, Li S, Jia W, Deng H, Chen K, Zhu L, et al. Reduced Let-7a is associated with chemoresistance in primary breast cancer. Sapino A, editor. PLoS One. 2015;10:e0133643.

  133. Fang Y, Shen H, Cao Y, Li H, Qin R, Chen Q, et al. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells. Brazilian J Med Biol Res. 2014;47:60–9.

    Article  CAS  Google Scholar 

  134. Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, et al. Oncogenic Wip1 Phosphatase Is Inhibited by miR-16 in the DNA Damage Signaling Pathway. Cancer Res. 2010;70:7176–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang B, Zhao R, He Y, Fu X, Fu L, Zhu Z, et al. Micro RNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget. 2016;7:5702–14.

    Article  PubMed  Google Scholar 

  136. Zhang H, Sun D, Mao L, Zhang J, Jiang L, Li J, et al. MiR-139-5p inhibits the biological function of breast cancer cells by targeting Notch1 and mediates chemosensitivity to docetaxel. Biochem Biophys Res Commun. 2015;465:702–13.

    Article  CAS  PubMed  Google Scholar 

  137. Cataldo A, Cheung DG, Balsari A, Tagliabue E, Coppola V, Iorio MV, et al. miR-302b enhances breast cancer cell sensitivity to cisplatin by regulating E2F1 and the cellular DNA damage response. Oncotarget. 2016;7:786–97.

    Article  PubMed  Google Scholar 

  138. Imani S, Wu RC, Fu J. MicroRNA-34 family in breast cancer: From research to therapeutic potential. J Cancer. 2018;9:3765–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Li ZH, Weng X, Xiong QY, Tu JH, Xiao A, Qiu W, et al. miR-34a expression in human breast cancer is associated with drug resistance. Oncotarget. 2017;8:106270–82.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Dai H, Xu L, Qian Q, Zhu Q, Chen W. MicroRNA-222 promotes drug resistance to doxorubicin in breast cancer via regulation of miR-222/bim pathway. Biosci Rep. 2019;39.

  141. Zhong S, Li W, Chen Z, Xu J, Zhao J. miR-222 and miR-29a contribute to the drug-resistance of breast cancer cells. Gene. 2013;531:8–14.

    Article  CAS  PubMed  Google Scholar 

  142. Mei M, Ren Y, Zhou X, Yuan X, Han L, Wang G, et al. Downregulation of miR-21 enhances chemotherapeutic effect of taxol in breast carcinoma cells. Technol Cancer Res Treat. 2010;9:77–86.

    Article  CAS  PubMed  Google Scholar 

  143. He H, Tian W, Chen H, Jiang K. MiR-944 functions as a novel oncogene and regulates the chemoresistance in breast cancer. Tumor Biol. 2016;37:1599–607.

    Article  CAS  Google Scholar 

  144. Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Su CM, Wang MY, Hong CC, Chen HA, Su YH, Wu CH, et al. miR-520h is crucial for DAPK2 regulation and breast cancer progression. Oncogene. 2016;35:1134–42.

    Article  CAS  PubMed  Google Scholar 

  146. Zhang Y, Wang Y, Wei Y, Li M, Yu S, Ye M, et al. MiR-129-3p promotes docetaxel resistance of breast cancer cells via CP110 inhibition. Sci Rep. 2015;5:15424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yao YS, Qiu WS, Yao RY, Zhang Q, Zhuang LK, Zhou F, et al. miR-141 confers docetaxel chemoresistance of breast cancer cells via regulation of EIF4E expression. Oncol Rep. 2015;33:2504–12.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang X, Zhong S, Xu Y, Yu D, Ma T, Chen L, et al. MicroRNA-3646 contributes to docetaxel resistance in human breast cancer cells by GSK-3β/β-catenin signaling pathway. Tan M, editor. PLoS One. 2016;11:e0153194.

  149. Khalighfard S, Alizadeh AM, Irani S, Omranipour R. Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep. 2018;8:17981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Esplugas R, Arenas M, Serra N, Bellés M, Bonet M, Gascón M, et al. Effect of radiotherapy on the expression of cardiovascular disease-related miRNA-146a, -155, -221 and -222 in blood of women with breast cancer. Metzinger L, editor. PLoS One. 2019;14:e0217443.

  151. Kopcalic K, Petrovic N, Stanojkovic TP, Stankovic V, Bukumiric Z, Roganovic J, et al. Association between miR-21/146a/155 level changes and acute genitourinary radiotoxicity in prostate cancer patients: A pilot study. Pathol - Res Pract. 2019;215:626–31.

    Article  CAS  PubMed  Google Scholar 

  152. Lindholm EM, Ragle Aure M, Haugen MH, Kleivi Sahlberg K, Kristensen VN, Nebdal D, et al. miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol. 2019;13:2278–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res. 2015;97:104–21.

    Article  CAS  PubMed  Google Scholar 

  154. Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9:2290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as Potential Therapeutics against Cancer. J Oncol. 2020;2020:1–14.

    Article  Google Scholar 

  156. Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122:1630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Loh HY, Norman BP, Lai KS, Rahman NMANA, Alitheen NBM, Osman MA. The Regulatory Role of MicroRNAs in Breast Cancer. Int J Mol Sci. 2019;20:4940.

  158. Hannafon BN, Cai A, Calloway CL, Xu YF, Zhang R, Fung KM, et al. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer. 2019;19:642.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Borrego-Soto G, Ortiz-López R, Rojas-Martínez A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet Mol Biol. 2015;38:420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors would like to thank to the Ministry of Education, Science and Technological Development of the Republic of Serbia for the financial support (451–03-68/2020–14/200043).

Author information

Authors and Affiliations

Authors

Contributions

NP designed the manuscript, wrote the manuscript, designed figures, critically revised, and approved the manuscript; IN wrote the manuscript, critically revised and approved the manuscript; MN wrote the manuscript, designed and draw the figures, and critically revised and approved the manuscript.

Corresponding author

Correspondence to Nina Petrović.

Ethics declarations

Competing Interest

The authors declare having no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: corrected Introduction heading, updated affiliation 1, and changes in abstract and keywords.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, N., Nakashidze, I. & Nedeljković, M. Breast Cancer Response to Therapy: Can microRNAs Lead the Way?. J Mammary Gland Biol Neoplasia 26, 157–178 (2021). https://doi.org/10.1007/s10911-021-09478-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-021-09478-3

Keywords

Navigation