Skip to main content
Log in

miR-21 Might be Involved in Breast Cancer Promotion and Invasion Rather than in Initial Events of Breast Cancer Development

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Breast cancer (BC) is a heterogeneous disease that develops into a large number of varied phenotypes. One of the features used in its classification and therapy selection is invasiveness. MicroRNA-21 (miR-21) is considered to be an important element of BC invasiveness, and miR-21 levels are frequently increased in different tumor types compared with normal tissue, including the breast. Experimental and literature research has highlighted that miR-21 was always significantly elevated in every study that included invasive breast carcinomas compared with healthy breast tissue. The main goal of this research was to specify the predominant role of miR-21 in the different phases of BC pathogenesis, i.e. whether it was involved in the early (initiation), later (promotion), or late (propagation, progression) phases. Our second goal was to explain the roles of miR-21 targets in BC by an in silico approach and literature review, and to associate the importance of miR-21 with particular phases of BC pathogenesis through the action of its target genes. Analysis has shown that changes in miR-21 levels might be important for the later and/or late phases of breast cancerogenesis rather than for the initial early phases. Targets of miR-21 (TIMP3, PDCD4, PTEN, TPM1 and RECK) are also primarily involved in BC promotion and progression, especially invasion, angiogenesis and metastasis. miR-21 expression levels could perhaps be used in conjunction with the standard diagnostic parameters as an indicator of BC presence, and to indicate a phenotype likely to show early invasion/metastasis detection and poor prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tomaskovic-Crook E, Thompson EW, Thiery J. Epithelial to mesenchymal transition and breast cancer. Breast Cancer Res. 2009;11(6):213.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Polyak K. Breast cancer: origins and evolution. J Clin Invest. 2007;117(11):3155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kinzler KW, Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996;87(2):159–70.

    Article  CAS  PubMed  Google Scholar 

  4. Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79(3–4):123–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Raval GN, Bharadwaj S, Levine EA, Willingham MC, Geary RL, Kute T, et al. Loss of expression of tropomyosin-1, a novel class II tumor suppressor that induces anoikis, in primary breast tumors. Oncogene. 2003;22(40):6194–203.

    Article  CAS  PubMed  Google Scholar 

  6. Volinsky N, McCarthy Cormac J, von Kriegsheim A, Saban N, Okada-Hatakeyama M, Kolch W, et al. Signalling mechanisms regulating phenotypic changes in breast cancer cells. Biosci Rep. 2015;35(2):e00178.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  10. Jovanovic J, Rønneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol Oncol. 2010;4(3):242–54.

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S. Epigenetics in breast cancer: what’s new? Breast Cancer Res. 2011;13(6):225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Byler S, Goldgar S, Heerboth S, Leary M, Housman G, Moulton K, et al. Genetic and epigenetic aspects of breast cancer progression and therapy. Anticancer Res. 2014;34(3):1071–7.

    CAS  PubMed  Google Scholar 

  13. Dworkin AM, Huang THM, Toland AE. Epigenetic alterations in the breast: implications for breast cancer detection, prognosis and treatment. Semin Cancer Biol. 2009;19(3):165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Annu Rev Biophys. 2013;42(1):217–39.

    Article  CAS  PubMed  Google Scholar 

  15. Foroni C, Broggini M, Generali D, Damia G. Epithelial–mesenchymal transition and breast cancer: role, molecular mechanisms and clinical impact. Cancer Treat Rev. 2012;38(6):689–97.

    Article  CAS  PubMed  Google Scholar 

  16. Gu S, Kay MA. How do miRNAs mediate translational repression? Silence. 2010;1(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006;20(5):515–24.

    Article  CAS  PubMed  Google Scholar 

  18. Goh JN, Loo SY, Datta A, Siveen KS, Yap WN, Cai W, et al. microRNAs in breast cancer: regulatory roles governing the hallmarks of cancer. Biol Rev Camb Philos Soc. 2015. doi:10.1111/brv.12176.

  19. Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38(6s):S8–13.

    Article  CAS  PubMed  Google Scholar 

  20. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455(7209):58–63.

    Article  CAS  PubMed  Google Scholar 

  21. Jansson MD, Lund AH. MicroRNA and cancer. Mol Oncol. 2012;6(6):590–610.

    Article  CAS  PubMed  Google Scholar 

  22. Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007;61(5 Part 2):24R–9R.

  23. Lehmann U. Aberrant DNA methylation of microRNA genes in human breast cancer: a critical appraisal. Cell Tissue Res. 2014;356(3):657–64.

    Article  CAS  PubMed  Google Scholar 

  24. Vrba L, Muñoz-Rodríguez JL, Stampfer MR, Futscher BW. miRNA gene promoters are frequent targets of aberrant DNA methylation in human breast cancer. PLoS One. 2013;8(1):e54398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67(18):8699–707.

    Article  CAS  PubMed  Google Scholar 

  26. Brueckner B, Stresemann C, Kuner R, Mund C, Musch T, Meister M, et al. The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res. 2007;67(4):1419–23.

    Article  CAS  PubMed  Google Scholar 

  27. Qu H, Xu W, Huang Y, Yang S. Circulating miRNAs: promising biomarkers of human cancer. Asian Pac J Cancer Prev. 2011;12(5):1117–25.

    PubMed  Google Scholar 

  28. Roth C, Rack B, Müller V, Janni W, Pantel K, Schwarzenbach H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010;12(6):R90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 2015;5(10):1122–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mar-Aguilar F, Mendoza-Ramírez JA, Malagón-Santiago I, Espino-Silva PK, Santuario-Facio SK, Ruiz-Flores P, et al. Serum circulating microRNA profiling for identification of potential breast cancer biomarkers. Dis Markers. 2013;34(3):163–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2010;10(12):1224–32.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng Y, Zhang C. MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 2010;3(3):251–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lu TX, Lim EJ, Itskovich S, Besse JA, Plassard AJ, Mingler MK, et al. Targeted ablation of miR-21 decreases murine eosinophil progenitor cell growth. PLoS One. 2013;8(3):e59397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. J Cell Mol Med. 2009;13(1):39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65(14):6029–33.

    Article  CAS  PubMed  Google Scholar 

  36. Lou Y, Yang X, Wang F, Cui Z, Huang Y. MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med. 2010;26(6):819–27.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Tang Q, Qiu M, Lang N, Li M, Zheng Y, et al. miR-21 targets the tumor suppressor RhoB and regulates proliferation, invasion and apoptosis in colorectal cancer cells. FEBS Lett. 2011;585(19):2998–3005.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Z. miR-21 promotes migration and invasion by the miR-21-PDCD4-AP-1 feedback loop in human hepatocellular carcinoma. Oncol Rep. 2012;27(5):1660–8.

    PubMed  Google Scholar 

  39. Rask L, Balslev EVA, Jørgensen S, Eriksen J, Flyger H, Møller S, et al. High expression of miR-21 in tumor stroma correlates with increased cancer cell proliferation in human breast cancer. APMIS. 2011;119(10):663–73.

    Article  PubMed  Google Scholar 

  40. Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 2011;13(1):R2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walter BA, Gomez-Macias G, Valera VA, Sobel M, Merino MJ. miR-21 expression in pregnancy-associated breast cancer: a possible marker of poor prognosis. J Cancer. 2011;2:67–75.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lee JA, Lee HY, Lee ES, Kim I, Bae JW. Prognostic implications of microRNA-21 overexpression in invasive ductal carcinomas of the breast. J Breast Cancer. 2011;14(4):269–75.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X, et al. Clinical significance of miR-21 expression in breast cancer: SYBR-green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep. 2009;21(3):673–9.

    CAS  PubMed  Google Scholar 

  44. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14(11):2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R, et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res Treat. 2008;117(1):131–40.

    Article  PubMed  Google Scholar 

  46. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Song B, Wang C, Liu J, Wang X, Lv L, Wei L, et al. MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 2010;29(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang Y, Chaerkady R, Beer MA, Mendell JT, Pandey A. Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics. 2009;9(5):1374–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 2009;37(8):2584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology. 2007;133(2):647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang ZX, Lu BB, Wang H, Cheng ZX, Yin YM. MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res. 2011;42(4):281–90.

    Article  CAS  PubMed  Google Scholar 

  54. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005;33(8):2697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu S, Si ML, Wu H, Mo YY. MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 2007;282(19):14328–36.

    Article  CAS  PubMed  Google Scholar 

  56. Qi L, Bart J, Tan L, Platteel I, Sluis T, Huitema S, et al. Expression of miR-21 and its targets (PTEN, PDCD4, TM1) in flat epithelial atypia of the breast in relation to ductal carcinoma in situ and invasive carcinoma. BMC Cancer. 2009;9(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang N, Zhang CQ, He JH, Duan XF, Wang YY, Ji X, et al. miR-21 down-regulation suppresses cell growth, invasion and induces cell apoptosis by targeting FASL, TIMP3, and RECK genes in esophageal carcinoma. Dig Dis Sci. 2013;58(7):1863–70.

    Article  CAS  PubMed  Google Scholar 

  58. Hatley ME, Patrick DM, Garcia MR, Richardson JA, Bassel-Duby R, Van Rooij E, et al. Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell. 2010;18(3):282–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26(19):2799–803.

    Article  CAS  PubMed  Google Scholar 

  60. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467(7311):86–90.

    Article  CAS  PubMed  Google Scholar 

  61. Iorio MV. MicroRNA Gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70.

    Article  CAS  PubMed  Google Scholar 

  62. Buscaglia LEB, Li Y. Apoptosis and the target genes of miR-21. Chin J Cancer. 2011;30(6):371–80.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hannafon BN, Sebastiani P, de las Morenas A, Lu J, Rosenberg CL. Expression of microRNA and their gene targets are dysregulated in preinvasive breast cancer. Breast Cancer Res. 2011;13(2):R24.

  64. Emery LA, Tripathi A, King C, Kavanah M, Mendez J, Stone MD, et al. Early dysregulation of cell adhesion and extracellular matrix pathways in breast cancer progression. Am J Path. 2009;175(3):1292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen L, Li Y, Fu Y, Peng J, Mo MH, Stamatakos M, et al. Role of deregulated microRNAs in breast cancer progression using FFPE tissue. PLoS One. 2013;8(1):e54213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Petrović N, Mandušić V, Stanojević B, Lukić S, Todorović L, Roganović J, et al. The difference in miR-21 expression levels between invasive and non-invasive breast cancers emphasizes its role in breast cancer invasion. Med Oncol. 2014;31(3):1–9.

    Google Scholar 

  67. Volinia S, Galasso M, Sana ME, Wise TF, Palatini J, Huebner K, et al. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Proc Natl Acad Sci. 2012;109(8):3024–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Petrović N, Mandušić V, Dimitrijević B, Roganović J, Lukić S, Todorović L, et al. Higher miR-21 expression in invasive breast carcinomas is associated with positive estrogen and progesterone receptor status in patients from Serbia. Med Oncol. 2014;31(6):1–9.

    Google Scholar 

  69. Han M, Wang Y, Liu M, Bi X, Bao J, Zeng N, et al. MiR-21 regulates epithelial-mesenchymal transition phenotype and hypoxia-inducible factor-1α expression in third-sphere forming breast cancer stem cell-like cells. Cancer Sci. 2012;103(6):1058–64.

    Article  CAS  PubMed  Google Scholar 

  70. Han M, Liu M, Wang Y, Chen X, Xu J, Sun Y, et al. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS One. 2012;7(6):e39520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang LH, Ge MH, Hou XX, Cao J, Hu SS, Lu XX, et al. miR-21 regulates tumor progression through the miR-21-PDCD4-Stat3 pathway in human salivary adenoid cystic carcinoma. Lab Invest. 2015;95(12):1398–408.

    Article  CAS  PubMed  Google Scholar 

  72. Han M, Liu M, Wang Y, Mo Z, Bi X, Liu Z, et al. Re-expression of miR-21 contributes to migration and invasion by inducing epithelial-mesenchymal transition consistent with cancer stem cell characteristics in MCF-7 cells. Mol Cell Biochem. 2012;363(1–2):427–36.

    Article  CAS  PubMed  Google Scholar 

  73. Orso F, Balzac F, Marino M, Lembo A, Retta SF, Taverna D. miR-21 coordinates tumor growth and modulates KRIT1 levels. Biochem Biophys Res Commun. 2013;438(1):90–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Orimo A, Weinberg RA. Heterogeneity of stromal fibroblasts in tumor. Cancer Biol Ther. 2007;6(4):618–9.

    Article  CAS  PubMed  Google Scholar 

  75. Li J, Zhang Y, Zhang W, Jia S, Tian R, Kang Y, et al. Genetic heterogeneity of breast cancer metastasis may be related to miR-21 regulation of TIMP-3 in translation. Int J Surg Oncol. 2013;2013:875078.

    PubMed  PubMed Central  Google Scholar 

  76. Nassar FJ, El Sabban M, Zgheib NK, Tfayli A, Boulos F, Jabbour M, et al. miRNA as potential biomarkers of breast cancer in the Lebanese population and in young women: a pilot study. PLoS One. 2014;9(9):e107566.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Petrović N, Jovanović-Ćupić S, Brajušković G, Lukić S, Roganović J, Krajnović M, et al. Micro RNA-21 expression levels in invasive breast carcinoma with a non-invasive component. Arch Biol Sci. 2015;67(4):1285–95.

    Article  Google Scholar 

  78. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139(2):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang X, Wang X, Shen H, Deng R, Xue K. Combination of miR-21 with circulating tumor cells markers improve diagnostic specificity of metastatic breast cancer. Cell Biochem Biophys. 2015;73(1):87–91.

    Article  CAS  Google Scholar 

  80. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DSB. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  81. Walsh LA, Roy DM, Reyngold M, Giri D, Snyder A, Turcan S, et al. RECK controls breast cancer metastasis by modulating a convergent, STAT3-dependent neoangiogenic switch. Oncogene. 2015;34(17):2189–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi:10.7554/eLife.05005.

    Article  Google Scholar 

  83. Betel D, Koppal A, Agius P, Sander C, Leslie C. Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol. 2010;11(8):R90.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(D1):D146–52.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42(D1):D68–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hsu SD, Tseng YT, Shrestha S, Lin YL, Khaleel A, Chou CH, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42(D1):D78–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37(5):495–500.

    Article  CAS  PubMed  Google Scholar 

  88. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell. 2007;27(1):91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sun T, Jiang D, Li J, Han D, Song Z. High expression of the RECK gene in breast cancer cells is related to low invasive capacity. Chin J Clin Oncol. 2006;3(5):322–5.

    Article  CAS  Google Scholar 

  90. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med. 2003;9(4):407–15.

    Article  CAS  PubMed  Google Scholar 

  91. Baker AH, George SJ, Zaltsman AB, Murphy G, Newby AC. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 1999;79(9–10):1347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spurbeck WW, Ng CY, Strom TS, Vanin EF, Davidoff AM. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood. 2002;100(9):3361–8.

    Article  CAS  PubMed  Google Scholar 

  93. Kajabova V, Smolkova B, Zmetakova I, Sebova K, Krivulcik T, Bella V, et al. RASSF1A promoter methylation levels positively correlate with estrogen receptor expression in breast cancer patients. Transl Oncol. 2013;6(3):297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Weng LP, Smith WM, Dahia PLM, Ziebold U, Gil E, Lees JA, et al. PTEN suppresses breast cancer cell growth by phosphatase activity-dependent G1 arrest followed by cell death. Cancer Res. 1999;59(22):5808–14.

    CAS  PubMed  Google Scholar 

  95. Lui EL, Loo WT, Zhu L, Cheung MN, Chow LW. DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother. 2005;59(Suppl 2):S363–5.

    Article  CAS  PubMed  Google Scholar 

  96. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chemy. 2007;283(2):1026–33.

    Article  Google Scholar 

  97. Huang TH, Wu F, Loeb GB, Hsu R, Heidersbach A, Brincat A, et al. Up-regulation of miR-21 by HER2/neu signaling promotes cell invasion. J Biol Chem. 2009;284(27):18515–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Weng LP, Brown JL, Eng C. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and independent pathways. Hum Mol Genet. 2001;10(3):237–42.

    Article  CAS  PubMed  Google Scholar 

  99. Pawlak G, Helfman DM. Cytoskeletal changes in cell transformation and tumorigenesis. Curr Opin Genet Dev. 2001;11(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  100. Xu LF, Wu ZP, Chen Y, Zhu QS, Hamidi S, Navab R. MicroRNA-21 (miR-21) regulates cellular proliferation, invasion, migration, and apoptosis by targeting PTEN, RECK and Bcl-2 in lung squamous carcinoma, Gejiu City, China. PLoS One. 2014;9(8):e103698.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS, et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 2008;28(17):5369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank Ivana Radulović for editing and proofreading this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Petrović.

Ethics declarations

Conflicts of interest

Nina Petrović declares no conflicts of interest.

Funding

This work was supported by the Ministry of Education and Science, Republic of Serbia (grant number ON173049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, N. miR-21 Might be Involved in Breast Cancer Promotion and Invasion Rather than in Initial Events of Breast Cancer Development. Mol Diagn Ther 20, 97–110 (2016). https://doi.org/10.1007/s40291-016-0186-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0186-3

Keywords

Navigation