Skip to main content

Advertisement

Log in

Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Years of investigation have shed light on a theory in which breast tumor epithelial cells are under the effect of the stromal microenvironment. This review aims to discuss recent findings concerning the phenotypic and functional characteristics of cancer associated fibroblasts (CAFs) and their involvement in tumor evolution, as well as their potential implications for anti-cancer therapy. In this manuscript, we reviewed that CAFs play a fundamental role in initiation, growth, invasion, and metastasis of breast cancer, and also serve as biomarkers in the clinical diagnosis, therapy, and prognosis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AT1R:

Angiotensin II (AngII) /AngII type I receptor

BM:

Bone marrow

CAF(s):

Cancer associated fibroblast(s)

CAV1:

Calveolin-1

CCL:

Chemokine ligand

CCR-2 C–C:

Chemokine receptor type 2

CD105:

Endoglin

CEACAM5:

Cells express antigen-related cell adhesion molecule 5

Chi3Li:

Chitinase 3-like 1

CSC:

Cancer stem cells

CTGF:

Connective tissue growth factor

CXCL C-X-C:

Motif chemokine ligand

CXCR4 C-X-C:

Motif chemokine receptor 4

CSPG:

Chondroitin sulfate proteoglycan

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMMPRIN:

Extracellular matrix metalloproteinase inducer

EMT:

Epithelial-mesenchymal transdifferentiation

ER:

Estrogen receptor

FAP:

Fibroblast activation protein

FGFR-1:

Fibroblast growth factor 1 receptor

FGF-β:

Basic fibroblast growth factor

FSP:

Fibroblast surface protein

Gas6:

Protein growth arrest-specific gene 6 protein

GemOE:

Geminin-overexpressing

HER2/neu:

Human epidermal growth factor receptor 2

HGF:

Hepatocyte growth factor

HIF-1α:

Hypoxia inducible factor-1α

HMGB1:

High mobility group box 1 protein

iCAFs:

Inflammatory’ CAFs

IGF:

Insulin growth factor

IGFR:

Insulin growth factor receptor

IL:

Interleukin

IL-R:

Interleukin receptor (R)

LOX:

Lysyl oxidase

LRRC15:

Leucine rich repeat containing 15

M-CSF:

Macrophage-colony stimulating factor

MDSC:

Myeloid-derived suppressor cells

MHC:

Major histocompatibility complex

MMP:

Metalloproteinases

MSC:

Mesenchymal stem cells

myoCAFs:

Myofibroblastic’ CAFs

NF-κB:

Nuclear factor-kappaβ

PD-1:

Programmed cell death protein 1

PDGF:

Platelet-derived growth factor

PDGFR:

Platelet-derived growth factor receptor

PDL-1:

Programmed death-ligand 1

PR:

Progesterone receptor

RAGE:

Receptor for advanced glycation end products

RANKL:

Receptor activator of nuclear factor-kappaβ ligand

ROS:

Reactive oxygen species

S100A4:

Calcium-binding protein

scRNA-seq:

Single-cell RNA sequencing

SDF-1:

Stromal-derived-factor-1

SLC39A8:

Solute carrier (SLC) 39A8

TAM:

Tumor-associated macrophages

TGF-β:

Transforming growth factor beta 1

TH1 T:

Lymphocyte helper 1

TIMP:

Tissue inhibitors of metalloproteinases

TNBC:

Triple negative breast cancer

TNF:

Tumor necrosis factor

TRAIL TNF:

Related apoptosis-inducing ligand

VEGF:

Vascular endothelial growth factor

α-SMA:

Alpha-smooth muscle actin

αFAP-PE38 FAP:

Targeting immunotoxin

References

  1. Lorusso G, Rüegg C. The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol. 2008;130:1091–103. https://doi.org/10.1007/s00418-008-0530-8.

    Article  CAS  PubMed  Google Scholar 

  2. Bissell MJ, Radisky DC, Rizki A, et al. The organizing principle: Microenvironmental influences in the normal and malignant breast. Differ. 2002;70:537–46. https://doi.org/10.1046/j.1432-0436.2002.700907.x.

    Article  Google Scholar 

  3. Arendt LM, Rudnick JA, Keller PJ, et al. Stroma in breast development and disease. Semin Cell Dev Biol. 2010;21:11–8. https://doi.org/10.1016/j.semcdb.2009.10.003.

    Article  CAS  PubMed  Google Scholar 

  4. Chantrain CF, Feron O, Marbaix E, et al. Bone marrow microenvironment and tumor progression. Cancer Microenviron. 2008;1:23–35. https://doi.org/10.1007/s12307-008-0010-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao D, Mittal V. The role of bone-marrow-derived cells in tumor growth, metastasis initiation and progression. Trends Mol Med. 2009;15:333–43. https://doi.org/10.1016/j.molmed.2009.06.006.

    Article  CAS  PubMed  Google Scholar 

  6. Gonda TA, Varro A, Wang TC, et al. Molecular biology of cancer-associated fibroblasts: Can these cells be targeted in anti-cancer therapy? Semin Cell Dev Biol. 2010;21:2–10. https://doi.org/10.1016/j.semcdb.2009.10.001.

    Article  CAS  PubMed  Google Scholar 

  7. Spaeth EL, Dembinski JL, Sasser AK, et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4:e4992.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martin FT, Dwyer RM, Kelly J, et al. Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: Stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat. 2010;124:317–26. https://doi.org/10.1007/s10549-010-0734-1.

    Article  CAS  PubMed  Google Scholar 

  9. Rhodes LV, Muir SE, Elliott S, et al. Adult human mesenchymal stem cells enhance breast tumorigenesis and promote hormone independence. Breast Cancer Res Treat. 2010;121:293–300. https://doi.org/10.1007/s10549-009-0458-2.

    Article  CAS  PubMed  Google Scholar 

  10. El-Haibi CP, Karnoub AE. Mesenchymal stem cells in the pathogenesis and therapy of breast cancer. J Mammary Gland Biol Neoplas. 2010;15:399–409. https://doi.org/10.1007/s10911-010-9196-7.

    Article  Google Scholar 

  11. Klopp AH, Gupta A, Spaeth E, et al. Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells. 2011;29:11–9. https://doi.org/10.1002/stem.559.

    Article  CAS  PubMed  Google Scholar 

  12. Luo H, Tu G, Liu Z, et al. Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Lett. 2015;361:155–63. https://doi.org/10.1016/j.canlet.2015.02.018.

    Article  CAS  PubMed  Google Scholar 

  13. Paulsson J, Micke P. Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol. 2014;25:61–8. https://doi.org/10.1016/j.semcancer.2014.02.006.

    Article  CAS  PubMed  Google Scholar 

  14. Kaushik N, Kim S, Suh Y, et al. Proinvasive extracellular matrix remodeling for tumor progression. Arch Pharmacal Res. 2019;42:40–7. https://doi.org/10.1007/s12272-018-1097-0.

    Article  CAS  Google Scholar 

  15. Najafi M, Goradel NH, Farhood B, et al. Tumor microenvironment: Interactions and therapy. J Cell Physiol. 2019;234:5700–21. https://doi.org/10.1002/jcp.27425.

    Article  CAS  PubMed  Google Scholar 

  16. Morsing M, Klitgaard MC, Jafari A, et al. Evidence of two distinct functionally specialized fibroblast lineages in breast stroma. Breast Cancer Res. 2016;18:1–11. https://doi.org/10.1186/s13058-016-0769-2.

    Article  CAS  Google Scholar 

  17. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401. https://doi.org/10.1038/nrc1877.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. J Exp & Clin Cancer Res. 2020;39:112. https://doi.org/10.1186/s13046-020-01611-0.

    Article  CAS  Google Scholar 

  19. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  20. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Disease models & mechanisms. 2018;11:dmm029447. https://doi.org/10.1242/dmm.029447.

  21. Yoshida GJ, Azuma A, Miura Y, et al. Activated fibroblast program orchestrates tumor initiation and progression; molecular mechanisms and the associated therapeutic strategies. Int J Mol Sci. 2019;20:2256. https://doi.org/10.3390/ijms20092256.

    Article  CAS  PubMed Central  Google Scholar 

  22. Barbazán J, Matic VD. Cancer associated fibroblasts: is the force the path to the dark side? Curr Opin Cell Biol. 2019;56:71–9. https://doi.org/10.1016/j.ceb.2018.09.002.

    Article  CAS  PubMed  Google Scholar 

  23. Salimifard S, Masjedi A, Hojjat-Farsangi M, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer. Pathol Res Pract. 2020;216:152915. https://doi.org/10.1016/j.prp.2020.152915.

    Article  CAS  PubMed  Google Scholar 

  24. Shekhar MPV, Pauley R, Heppner G. Extracellular matrix-stromal cell contribution to neoplastic phenotype of epithelial cells in the breast. Breast Cancer Res. 2003;5:130–5. https://doi.org/10.1186/bcr580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Giatromanolaki A, Sivridis E, Koukourakis MI. The pathology of tumor stromatogenesis. Cancer Biol Ther. 2007;6:639–45. https://doi.org/10.4161/cbt.6.5.4198.

    Article  CAS  PubMed  Google Scholar 

  26. Bitoux M-A, Stamenkovic I. Tumor-host interactions: the role of inflammation. Histochem Cell Biol. 2008;130:1079–90. https://doi.org/10.1007/s00418-008-0527-3.

    Article  CAS  PubMed  Google Scholar 

  27. Garamszegi N, Garamszegi SP, Shehadeh LA, et al. Extracellular Matrix-Induced Gene Expression in Human Breast Cancer Cells. Mol Cancer Res. 2009;7:319–29. https://doi.org/10.1158/1541-7786.MCR-08-0227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ali S, Lazennec G. Chemokines: Novel targets for breast cancer metastasis. Cancer Metastasis Rev. 2007;26:401–20. https://doi.org/10.1007/s10555-007-9073-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ahn S, Cho J, Sung J, et al. The prognostic significance of tumor-associated stroma in invasive breast carcinoma. Tumor Biol. 2012;33:1573–80. https://doi.org/10.1007/s13277-012-0411-6.

    Article  Google Scholar 

  30. Hugo HJ, Lebret S, Tomaskovic-Crook E, et al. Contribution of fibroblast and mast cell (afferent) and tumor (efferent) IL-6 effects within the tumor microenvironment. Cancer Microenviron. 2012;5:83–93. https://doi.org/10.1007/s12307-012-0098-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horimoto Y, Polanska UM, Takahashi Y, et al. Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adhes Migr. 2012;6:193–202. https://doi.org/10.4161/cam.20631.

    Article  Google Scholar 

  32. Conklin MW, Eickhoff JC, Riching KM, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol. 2011;178:1221–32. https://doi.org/10.1016/j.ajpath.2010.11.076.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Conklin MW, Keely PJ. Why the stroma matters in breast cancer: Insights into breast cancer patient outcomes through the examination of stromal biomarkers. Cell Adhes Migr. 2012;6:249–60. https://doi.org/10.4161/cam.20567.

    Article  Google Scholar 

  34. Hill BS, Sarnella A, D’Avino G, et al. Recruitment of stromal cells into tumour microenvironment promote the metastatic spread of breast cancer. Semin Cancer Biol. 2019;60:202–13. https://doi.org/10.1016/j.semcancer.2019.07.028.

    Article  PubMed  Google Scholar 

  35. Yeldag G, Rice A, del Río HA. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers. 2018;10:471. https://doi.org/10.3390/cancers10120471.

    Article  CAS  PubMed Central  Google Scholar 

  36. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discovery. 2019;18:99–115. https://doi.org/10.1038/s41573-018-0004-1.

    Article  CAS  PubMed  Google Scholar 

  37. Gillies RJ, Raghunand N, Karczmar GS, et al. MRI of the tumor microenvironment. J Magn Reson Imaging. 2002;16:430–50. https://doi.org/10.1002/jmri.10181.

    Article  PubMed  Google Scholar 

  38. Wouters BG, Weppler SA, Koritzinsky M, et al. Hypoxia as a target for combined modality treatments. 2002;38:1–9.

    Google Scholar 

  39. Runkel S, Wischnik A, Teubner J, Kaven E, Gaa J MF. Oxygenation of Mammary Tumors as Evaluated by Ultrasound-Guided Computerized-PO2-Histography. In Oxygen Transport to Tissue XV. Springer, Boston, MA. 1994. p. 451–8. https://doi.org/10.1007/978-1-4615-2468-7_60.

  40. Knoop C, Hockel M. Oxygenation of Human Tumors: Evaluation Of Tissue Oxygen Distribution In Breast Cancers By Computerized O2 Tension Measurements. Can Res. 1991;51:3316–22.

    Google Scholar 

  41. Mccarty MF, Whitaker J. Manipulating Tumor Acidification As Cancer Treament Strategys. 2010;15:264–72.

    Google Scholar 

  42. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol. 2003;200:429–47. https://doi.org/10.1002/path.1398.

    Article  CAS  PubMed  Google Scholar 

  43. Bishop J. Molecular themes in oncogenesis. Cell. 1991;64:235–48. https://doi.org/10.1016/0092-8674(91)90636-d.

    Article  CAS  PubMed  Google Scholar 

  44. Liotta LA, Kohn EC. The microenvironment of the tumour–host interface. Nat. 2001;411:375–9. https://doi.org/10.1038/35077241.

    Article  CAS  Google Scholar 

  45. Dolberg DS, Hollingsworth R, Hertle M, et al. Wounding and its role in RSV-mediated tumor formation. Sci. 1985;230:676–8. https://doi.org/10.1126/science.2996144.

    Article  CAS  Google Scholar 

  46. Sieweke MH, Thompson NL, Sporn MB, et al. Mediation of wound-related rous sarcoma virus tumorigenesis by TGF-β. Sci. 1990;248:1656–60. https://doi.org/10.1126/science.2163544.

    Article  CAS  Google Scholar 

  47. Pietras K, Östman A. Hallmarks of cancer: Interactions with the tumor stroma. Exp Cell Res. 2010;316:1324–31. https://doi.org/10.1016/j.yexcr.2010.02.045.

    Article  CAS  PubMed  Google Scholar 

  48. Sappino A ‐P, Skalli O, Jackson B, et al. Smooth‐muscle differentiation in stromal cells of malignant and non‐malignant breast tissues. Int J Cancer. 1988;41:707–12. https://doi.org/10.1002/ijc.2910410512.

  49. Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96. https://doi.org/10.1016/j.addr.2015.07.007.

    Article  CAS  PubMed  Google Scholar 

  50. Qiao A, Gu F, Guo X, et al. Breast cancer-associated fibroblasts: their roles in tumor initiation, progression and clinical applications. Front Med. 2016;10:33–40. https://doi.org/10.1007/s11684-016-0431-5.

    Article  PubMed  Google Scholar 

  51. Kumar S, Shabi TS, Goormaghtigh E. A FTIR imaging characterization of fibroblasts stimulated by various breast cancer cell lines. PLoS ONE. 2014;9. https://doi.org/10.1371/journal.pone.0111137.

  52. Shiga K, Hara M, Nagasaki T, et al. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers. 2015;7:2443–58. https://doi.org/10.3390/cancers7040902.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: Where we are and where we need to go. Cancers. 2016;8:1–19. https://doi.org/10.3390/cancers8020019.

    Article  CAS  Google Scholar 

  54. Park SY, Kim HM, Koo JS. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727–41. https://doi.org/10.1007/s10549-015-3291-9.

    Article  CAS  PubMed  Google Scholar 

  55. Purcell JW, Tanlimco SG, Hickson JA, et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Can Res. 2018;78:1457–70. https://doi.org/10.1158/0008-5472.CAN-18-0327.

    Article  CAS  Google Scholar 

  56. Sebastian A, Hum NR, Martin KA, et al. Single-Cell Transcriptomic Analysis of Heterogeneity in Breast Cancer. Cancers. 2020;12:E1307. https://doi.org/10.3390/cancers12051307.

    Article  CAS  PubMed  Google Scholar 

  57. Cortez E, Roswall P, Pietras K. Functional subsets of mesenchymal cell types in the tumor microenvironment. Semin Cancer Biol. 2014;25:3–9. https://doi.org/10.1016/j.semcancer.2013.12.010.

    Article  CAS  PubMed  Google Scholar 

  58. Costa A, Kieffer Y, Scholer-Dahirel A, et al. Fibroblast Heterogeneity and Immunosuppressive Environment in Human Breast Cancer. Cancer Cell. 2018;33:1–17. https://doi.org/10.1016/j.ccell.2018.01.011.

    Article  CAS  Google Scholar 

  59. Kojima Y, Acar A, Eaton EN, et al. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA. 2010;107:20009–14. https://doi.org/10.1073/pnas.1013805107.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bartoschek M, Oskolkov N, Bocci M, et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun. 2018;9. https://doi.org/10.1038/s41467-018-07582-3.

  61. Raz Y, Cohen N, Shani O, et al. Bone marrow–derived fibroblasts are a functionally distinct stromal cell population in breast cancer. J Exp Med. 2018;215:3075–93. https://doi.org/10.1084/jem.20180818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ghiabi P, Jiang J, Pasquier J, et al. Breast cancer cells promote a notch-dependent mesenchymal phenotype in endothelial cells participating to a pro-tumoral niche. J Transl Med. 2015;13:1–19. https://doi.org/10.1186/s12967-015-0386-3.

    Article  CAS  Google Scholar 

  63. Weber, et al. Osteopontin Mediates an MZF1-TGF-β1-Dependent Transformation of Mesenchymal Stem Cells into Cancer Associated Fibroblasts in Breast Cancer. Oncog. 2015;34:4821–33. https://doi.org/10.1038/onc.2014.410.

    Article  CAS  Google Scholar 

  64. Rønnov-Jessen L, Petersen OW, Koteliansky VE, et al. The origin of the myofibroblasts in breast cancer: Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Investig. 1995;95:859–73. https://doi.org/10.1172/JCI117736.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bochet L, Lehuédé C, Dauvillier S, et al. Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Can Res. 2013;73:5657–68. https://doi.org/10.1158/0008-5472.CAN-13-0530.

    Article  CAS  Google Scholar 

  66. Nair N, Calle AS, Zahra MH, et al. A cancer stem cell model as the point of origin of cancer-associated fibroblasts in tumor microenvironment. Sci Rep. 2017;7:6838. https://doi.org/10.1038/s41598-017-07144-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bronzert DA, Pantazis P, Antoniades HN, et al. Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci USA. 1987;84:5763–7. https://doi.org/10.1073/pnas.84.16.5763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncog. 2000;19:4337–45. https://doi.org/10.1038/sj.onc.1203785.

    Article  CAS  Google Scholar 

  69. Hendrayani SF, Al-Khalaf HH, Aboussekhra A. The cytokine il-6 reactivates breast stromal fibroblasts through transcription factor STAT3-dependent up-regulation of the RNA-binding protein AUF1. J Biol Chem. 2014;289:30962–76. https://doi.org/10.1074/jbc.M114.594044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharon Y, Raz Y, Cohen N, et al. Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer. Can Res. 2015;75:963–73. https://doi.org/10.1158/0008-5472.CAN-14-1990.

    Article  CAS  Google Scholar 

  71. Arcucci A, Ruocco MR, Granato G, et al. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts. BioMed Res Int. 2016. https://doi.org/10.1155/2016/4502846.

  72. Li K, Liu T, Chen J, et al. Survivin in breast cancer-derived exosomes activates fibroblasts by upregulating SOD1, whose feedback promotes cancer proliferation and metastasis. J Biol Chem. 2020. jbc.RA120.013805. https://doi.org/10.1074/jbc.ra120.013805.

  73. Vu LT, Peng B, Zhang DX, et al. Tumor-secreted extracellular vesicles promote the activation of cancer-associated fibroblasts via the transfer of microRNA-125b. J Extracell Vesicles. 2019;8:1599680. https://doi.org/10.1080/20013078.2019.1599680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chatterjee A, Jana S, Chatterjee S, et al. MicroRNA-222 reprogrammed cancer-associated fi broblasts enhance growth and metastasis of breast cancer. Br J Cancer. 2019. https://doi.org/10.1038/s41416-019-0566-7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Albrengues J, Bertero T, Grasset E, et al. Epigenetic switch drives the conversion of fibroblasts into proinvasive cancer-associated fibroblasts. Nat Commun. 2015;6:10204. https://doi.org/10.1038/ncomms10204.

    Article  CAS  PubMed  Google Scholar 

  76. Wang D dan, Li J, Sha H huan, et al. miR-222 confers the resistance of breast cancer cells to Adriamycin through suppression of p27kip1 expression. Gene. 2016;590:44–50. https://doi.org/10.1016/j.gene.2016.06.013.

  77. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol. 2014;25:23–32. https://doi.org/10.1016/j.semcancer.2013.12.007.

    Article  CAS  PubMed  Google Scholar 

  78. Manuscript A, Cells D, Cancer B. Role of Oxidative Stress and the Microenvironment in Breast Cancer Development and Progression. 2014;19:1–11. https://doi.org/10.1097/PPO.0000000000000007.Dendritic.

    Article  Google Scholar 

  79. Xing F, Saidou J, Watabe K. Cancer associated fibroblasts (CAFs) in tumor microenvironment. Frontiers in bioscience (Landmark edition). 2010;15:166–79. https://doi.org/10.2741/3613.

    Article  CAS  Google Scholar 

  80. Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do they contribute to metastasis? Clin Exp Metas. 2019;36:71–86. https://doi.org/10.1007/s10585-019-09959-0.

    Article  CAS  Google Scholar 

  81. Motrescu ER, Rio MC. Cancer cells, adipocytes and matrix metalloproteinase 11: A vicious tumor progression cycle. Biol Chem. 2008;389:1037–41. https://doi.org/10.1515/BC.2008.110.

    Article  CAS  PubMed  Google Scholar 

  82. Park J, Euhus DM, Scherer PE. Paracrine and endocrine effects of adipose tissue on cancer development and progression. Endocr Rev. 2011;32:550–70. https://doi.org/10.1210/er.2010-0030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008;99:1375–9. https://doi.org/10.1038/sj.bjc.6604662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeisberg EM, Potenta S, Xie L, et al. Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Can Res. 2007;67:10123–8. https://doi.org/10.1158/0008-5472.CAN-07-3127.

    Article  CAS  Google Scholar 

  85. Yeon JH, Jeong HE, Seo H, et al. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomater. 2018;76:146–53. https://doi.org/10.1016/j.actbio.2018.07.001.

    Article  CAS  PubMed  Google Scholar 

  86. Chaturvedi P, Gilkes DM, Wong CCL, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Investig. 2013;123:189–205. https://doi.org/10.1172/JCI64993.

    Article  CAS  PubMed  Google Scholar 

  87. Spaeth E, Klopp A, Dembinski J, et al. Inflammation and tumor microenvironments: Defining the migratory itinerary of mesenchymal stem cells. Gene Ther. 2008;15:730–8. https://doi.org/10.1038/gt.2008.39.

    Article  CAS  PubMed  Google Scholar 

  88. Shi Y, Du L, Lin L, et al. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat Rev Drug Discovery. 2016;16:35–52. https://doi.org/10.1038/nrd.2016.193.

    Article  CAS  PubMed  Google Scholar 

  89. Sewell-Loftin MK, Bayer SVH, Crist E, et al. Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-13006-x.

    Article  CAS  Google Scholar 

  90. Wobus M, List C, Dittrich T, et al. Breast carcinoma cells modulate the chemoattractive activity of human bone marrow-derived mesenchymal stromal cells by interfering with CXCL12. Int J Cancer. 2015;136:44–54. https://doi.org/10.1002/ijc.28960.

    Article  CAS  PubMed  Google Scholar 

  91. Jahn SC, Law ME, Corsino PE, et al. An in vivo model of epithelial to mesenchymal transition reveals a mitogenic switch. Cancer Lett. 2012;326:183–90. https://doi.org/10.1016/j.canlet.2012.08.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paunescu V, Bojin FM, Tatu CA, et al. Tumour-associated fibroblasts and mesenchymal stem cells: More similarities than differences. J Cell Mol Med. 2011;15:635–46. https://doi.org/10.1111/j.1582-4934.2010.01044.x.

    Article  CAS  PubMed  Google Scholar 

  93. Del Valle PR, Milani C, Brentani MM, et al. Transcriptional profile of fibroblasts obtained from the primary site, lymph node and bone marrow of breast cancer patients. Genet Mol Biol. 2014;37:480–9. https://doi.org/10.1590/S1415-47572014000400002.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mishra PJ, Mishra PJ, Humeniuk R, et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Can Res. 2008;68:4331–9. https://doi.org/10.1158/0008-5472.CAN-08-0943.

    Article  CAS  Google Scholar 

  95. Pasanen I, Lehtonen S, Sormunen R, et al. Breast cancer carcinoma-associated fibroblasts differ from breast fibroblasts in immunological and extracellular matrix regulating pathways. Exp Cell Res. 2016;344:53–66. https://doi.org/10.1016/j.yexcr.2016.04.016.

    Article  CAS  PubMed  Google Scholar 

  96. Heneberg P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit Rev Oncol/Hematol. 2016;97:303–11. https://doi.org/10.1016/j.critrevonc.2015.09.008.

    Article  Google Scholar 

  97. Labovsky V, Martinez LM, Davies KM, et al. Association Between Ligands and Receptors Related to the Progression of Early Breast Cancer in Tumor Epithelial and Stromal Cells. Clin Breast Cancer. 2015;15:e13–21. https://doi.org/10.1016/j.clbc.2014.05.006.

    Article  CAS  PubMed  Google Scholar 

  98. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: A diabolic liaison driving cancer progression. Cancer Metastasis Rev. 2012;31:195–208. https://doi.org/10.1007/s10555-011-9340-x.

    Article  PubMed  Google Scholar 

  99. Neel J-C, Humbert L, Lebrun J-J. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN Mol Biol. 2012;2012:1–28. https://doi.org/10.5402/2012/381428.

    Article  CAS  Google Scholar 

  100. Principe DR, Doll JA, Bauer J, et al. TGF-β: Duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst. 2014;106:1–16. https://doi.org/10.1093/jnci/djt369.

    Article  CAS  Google Scholar 

  101. Knudson KM, Hicks KC, Luo X, et al. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. OncoImmunology. 2018;7:1–14. https://doi.org/10.1080/2162402X.2018.1426519.

    Article  Google Scholar 

  102. Boyd N, Berman H, Zhu J, et al. The origins of breast cancer associated with mammographic density: A testable biological hypothesis. Breast Cancer Res. 2018;20:1–13. https://doi.org/10.1186/s13058-018-0941-y.

    Article  CAS  Google Scholar 

  103. Nguyen DH, Oketch-Rabah HA, Illa-Bochaca I, et al. Radiation Acts on the Microenvironment to Affect Breast Carcinogenesis by Distinct Mechanisms that Decrease Cancer Latency and Affect Tumor Type. Cancer Cell. 2011;19:640–51. https://doi.org/10.1016/j.ccr.2011.03.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kuperwasser C, Chavarria T, Wu M, et al. From The Cover: Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci. 2004;101:4966–71. https://doi.org/10.1073/pnas.0401064101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shekhar MPV, Werdell J, Santner SJ, et al. Breast stroma plays a dominant regulatory role in breast epithelial growth and differentiation: Implications for tumor development and progression. Can Res. 2001;61:1320–6.

    CAS  Google Scholar 

  106. Wang B, Xi C, Liu M, et al. Breast fibroblasts in both cancer and normal tissues induce phenotypic transformation of breast cancer stem cells : a preliminary study. 2018:1–19. https://doi.org/10.7717/peerj.4805.

  107. Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. cell. 2012. https://doi.org/10.1016/j.cell.2012.04.042.

  108. Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48. https://doi.org/10.1016/j.cell.2005.02.034.

    Article  CAS  PubMed  Google Scholar 

  109. Liao D, Luo Y, Markowitz D, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE. 2009;4:e7965. https://doi.org/10.1371/journal.pone.0007965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sjöberg E, Augsten M, Bergh J, et al. Expression of the chemokine CXCL14 in the tumour stroma is an independent marker of survival in breast cancer. Br J Cancer. 2016;114:1117–24. https://doi.org/10.1038/bjc.2016.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sjöberg E, Meyrath M, Milde L, et al. A novel ACKR2-Dependent role of fibroblast-derived CXCL14 in epithelial-to-mesenchymal transition and metastasis of breast cancer. Clin Cancer Res. 2019;25:3702–17. https://doi.org/10.1158/1078-0432.CCR-18-1294.

    Article  PubMed  Google Scholar 

  112. Allaoui R, Bergenfelz C, Mohlin S, et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun. 2016;7:13050. https://doi.org/10.1038/ncomms13050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med. 2014;211:1503–23. https://doi.org/10.1084/jem.20140692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Karnoub AE1, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R WR. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nat. 2007.

  115. Suh J, Kim DH, Lee YH, et al. Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling. Mol carcinog. 2020:1–13. https://doi.org/10.1002/mc.23233.

  116. Wu X, Zahari MS, Renuse S, et al. Quantitative phosphoproteomic analysis reveals reciprocal activation of receptor tyrosine kinases between cancer epithelial cells and stromal fibroblasts. Clin Proteomics. 2018;15:21. https://doi.org/10.1186/s12014-018-9197-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. DeClerck YA, Pienta KJ, Woodhouse EC, et al. The tumor microenvironment at a turning point knowledge gained over the last decade, and challenges and opportunities ahead: A white paper from the NCI TME network. Can Res. 2017;77:1051–9. https://doi.org/10.1158/0008-5472.CAN-16-1336.

    Article  CAS  Google Scholar 

  118. Qiu W, Hu M, Sridhar A, et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet. 2008;40:650–5. https://doi.org/10.1038/ng.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jang I, Beningo KA. Integrins, CAFs and Mechanical Forces in the Progression of Cancer. Cancers. 2019;11:721. https://doi.org/10.3390/cancers11050721.

    Article  CAS  PubMed Central  Google Scholar 

  120. Wang Z, Xiong S, Mao Y, et al. Periostin promotes immunosuppressive pre-metastatic niche formation to facilitate breast tumor metastasis. J Pathol. 2016;239:484–95.

    Article  CAS  PubMed  Google Scholar 

  121. Huang W, Chiquet-Ehrismann R, Orend G, et al. Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Can Res. 2001;61:8586–94.

    CAS  Google Scholar 

  122. Labovsky V, Martinez LM, Davies KM, et al. Prognostic significance of TRAIL-R3 and CCR-2 expression in tumor epithelial cells of patients with early breast cancer. BMC Cancer. 2017;17:280. https://doi.org/10.1186/s12885-017-3259-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Martinez-Outschoorn UE, Balliet RM, Rivadeneira DB, et al. Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle. 2010;9:3256–76. https://doi.org/10.4161/cc.9.16.12553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanford-Crane H, Abrego J, Sherman MH. Fibroblasts as Modulators of Local and Systemic Cancer Metabolism. Cancers. 2019;11:619. https://doi.org/10.3390/cancers11050619.

    Article  CAS  PubMed Central  Google Scholar 

  125. Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8:3984–4001. https://doi.org/10.4161/cc.8.23.10238.

    Article  CAS  PubMed  Google Scholar 

  126. Sotgia F, Martinez-Outschoorn UE, Pavlides S, et al. Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res. 2011;13:1–13. https://doi.org/10.1186/bcr2892.

    Article  Google Scholar 

  127. Fu Y, Liu S, Yin S, et al. The reverse Warburg effect is likely to be an Achilles’ heel of cancer that can be exploited for cancer therapy. Oncotarget. 2017;8:57813–25. https://doi.org/10.18632/oncotarget.18175.

  128. Becker LM, O’Connell JT, Vo AP, et al. Epigenetic Reprogramming of Cancer-Associated Fibroblasts Deregulates Glucose Metabolism and Facilitates Progression of Breast Cancer. Cell Rep. 2020;31:107701. https://doi.org/10.1016/j.celrep.2020.107701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Eiro N, González L, Martínez-Ordoñez A, et al. Cancer-associated fibroblasts affect breast cancer cell gene expression, invasion and angiogenesis. Cell Oncol. 2018:1–10. https://doi.org/10.1007/s13402-018-0371-y.

  130. Lappano R, Rigiracciolo DC, Belfiore A, et al. Cancer associated fibroblasts: role in breast cancer and potential as therapeutic targets. Expert Opinion on Therapeutic Targets. 2020;24:559–72. https://doi.org/10.1080/14728222.2020.1751819.

    Article  CAS  PubMed  Google Scholar 

  131. Yu Y, Xiao CH, Tan LD, et al. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br J Cancer. 2014;110:724–32. https://doi.org/10.1038/bjc.2013.768.

    Article  CAS  PubMed  Google Scholar 

  132. Matà R, Palladino C, Nicolosi ML, et al. IGF-I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget. 2016;7:7683–700. https://doi.org/10.18632/oncotarget.6524.

  133. Dumont N, Liu B, Defilippis RA, et al. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia (United States). 2013;15:249–62. https://doi.org/10.1593/neo.121950.

    Article  CAS  Google Scholar 

  134. Wang JM, Deng X, Gong W, et al. Chemokines and their role in tumor growth and metastasis. J Immunol Methods. 1998;220:1–17. https://doi.org/10.1016/S0022-1759(98)00128-8.

    Article  CAS  PubMed  Google Scholar 

  135. Primac I, Maquoi E, Blacher S, et al. Stromal integrin α11 regulates PDGFRβ signaling and promotes breast cancer progression. J Clin Investig. 2019;129:4609–28. https://doi.org/10.1172/JCI125890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tyan SW, Kuo WH, Huang CK, et al. Breast cancer cells induce cancer-associated fibroblasts to secrete hepatocyte growth factor to enhance breast tumorigenesis. PLoS ONE. 2011;6:1–9. https://doi.org/10.1371/journal.pone.0015313.

    Article  CAS  Google Scholar 

  137. Osuala KO, Sameni M, Shah S, et al. Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer. 2015;15. https://doi.org/10.1186/s12885-015-1576-3.

  138. Studebaker AW, Storci G, Werbeck JL, et al. Fibroblasts isolated from common sites of breast cancer metastasis enhance cancer cell growth rates and invasiveness in an interleukin-6-dependent manner. Can Res. 2008;68:9087–95. https://doi.org/10.1158/0008-5472.CAN-08-0400.

    Article  CAS  Google Scholar 

  139. Liu Y, Yang Y, Du J, et al. MiR-3613–3p from carcinoma-associated fibroblasts exosomes promoted breast cancer cell proliferation and metastasis by regulating SOCS2 expression. IUBMB Life. 2020:1–10. https://doi.org/10.1002/iub.2292.

  140. Donnarumma E, Fiore D, Nappa M, et al. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget. 2017;8:19592–608. https://doi.org/10.18632/oncotarget.14752.

  141. Gaggioli C, Hooper S, Hidalgo-Carcedo C, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400. https://doi.org/10.1038/ncb1658.

    Article  CAS  PubMed  Google Scholar 

  142. Attieh Y, Clark AG, Grass C, et al. Cancer-associated fibroblasts lead tumor invasion through integrin-β3-dependent fibronectin asse. J Cell Biol. 2017;216:3509–20. https://doi.org/10.1083/jcb.201702033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nabeshima K, Inoue T, Shimao Y, et al. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol Int. 2002;52:255–64. https://doi.org/10.1046/j.1440-1827.2002.01343.x.

    Article  CAS  PubMed  Google Scholar 

  144. Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2017;18:1135–49.

    Article  Google Scholar 

  145. Matsumura Y, Ito Y, Mezawa Y, et al. Stromal fibroblasts induce metastatic tumor cell clusters via epithelial–mesenchymal plasticity. Life Sci Alliance. 2019;2:1–24. https://doi.org/10.26508/lsa.201900425.

  146. Duda DG, Duyverman AMMJ, Kohno M, et al. Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci USA. 2010;107:21677–82. https://doi.org/10.1073/pnas.1016234107.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Psailaa B, Kaplana RN, Port ER, et al. Priming the “soil” for breast cancer metastasis: The Pre-Metastatic Niche. Breast Dis. 2006;26:65–74. https://doi.org/10.3233/bd-2007-26106.

    Article  Google Scholar 

  148. Ursini-Siegel J, Siegel PM. The influence of the pre-metastatic niche on breast cancer metastasis. Cancer Lett. 2016;380:281–8. https://doi.org/10.1016/j.canlet.2015.11.009.

    Article  CAS  PubMed  Google Scholar 

  149. Feng T, Zhang P, Sun Y, et al. High throughput sequencing identifies breast cancer-secreted exosomal LncRNAs initiating pulmonary pre-metastatic niche formation. Gene. 2019;710:258–64. https://doi.org/10.1016/j.gene.2019.06.004.

    Article  CAS  PubMed  Google Scholar 

  150. Taverna S, Giusti I, D’ascenzo S, et al. Breast cancer derived extracellular vesicles in bone metastasis induction and their clinical implications as biomarkers. Int J Mol Sci. 2020;21:1–21. https://doi.org/10.3390/ijms21103573.

  151. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nat. 2005;438:820–7. https://doi.org/10.1038/nature04186.

    Article  CAS  Google Scholar 

  152. Cox TR, Bird D, Baker A, et al. LOX-Mediated Collagen Crosslinking Is Responsible for Fibrosis-Enhanced Metastasis. Can Res. 2013;73:1721–32. https://doi.org/10.1158/0008-5472.CAN-12-2233.

    Article  CAS  Google Scholar 

  153. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nat. 2012;481:85–91. https://doi.org/10.1038/nature10694.

    Article  CAS  Google Scholar 

  154. Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev. 2018;37:577–97. https://doi.org/10.1007/s10555-018-9768-3.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang Y and Ertl HC. Depletion of FAP+ cells reduces immunosuppressive cells and improves metabolism and functions CD8+T cells within tumors. Oncotarget. 2016;7:23282–99. https://doi.org/10.18632/oncotarget.7818.

  156. Zhang J, Pang Y, Xie T, et al. CXCR4 antagonism in combination with IDO1 inhibition weakens immune suppression and inhibits tumor growth in mouse breast cancer bone metastases. OncoTargets Ther. 2019;12:4985–92. https://doi.org/10.2147/OTT.S200643.

    Article  CAS  Google Scholar 

  157. Xia Q, Zhang FF, Geng F, et al. Improvement of anti-tumor immunity of fibroblast activation protein α based vaccines by combination with cyclophosphamide in a murine model of breast cancer. Cell Immunol. 2016;310:89–98. https://doi.org/10.1016/j.cellimm.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  158. Kieffer Y, Hocine HR, Gentric G, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;33:CD-19–1384. https://doi.org/10.1158/2159-8290.cd-19-1384.

  159. Gok Yavuz B, Gunaydin G, Gedik ME, et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1 + TAMs. Sci Rep. 2019;9:1–15. https://doi.org/10.1038/s41598-019-39553-z.

    Article  CAS  Google Scholar 

  160. Roca H, Varcos ZS, Sud S, et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem. 2009;284:34342–54. https://doi.org/10.1074/jbc.M109.042671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mulholland BS, Forwood MR, Morrison NA. Monocyte Chemoattractant Protein-1 (MCP-1/CCL2) Drives Activation of Bone Remodelling and Skeletal Metastasis. Curr Osteoporos Rep. 2019;17:538–47. https://doi.org/10.1007/s11914-019-00545-7.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Khalid A, Wolfram J, Ferrari I, et al. Recent Advances in Discovering the Role of CCL5 in Metastatic Breast Cancer. Mini-Reviews Med Chem. 2015;15:1063–72. https://doi.org/10.2174/138955751513150923094709.

    Article  CAS  Google Scholar 

  163. Swamydas M, Ricci K, Rego SL, et al. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adhes Migr. 2013;7:315–24. https://doi.org/10.4161/cam.25138.

    Article  Google Scholar 

  164. Ouyang L, Chang W, Fang B, et al. Estrogen-induced SDF-1α production promotes the progression of ER-negative breast cancer via the accumulation of MDSCs in the tumor microenvironment. Sci Rep. 2016;6:39541. https://doi.org/10.1038/srep39541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shou D, Wen L, Song Z, et al. Suppressive role of myeloid-derived suppressor cells (MDSCs) in the microenvironment of breast cancer and targeted immunotherapies. Oncotarget. 2016;7:64505–11. https://doi.org/10.18632/oncotarget.11352.

  166. Stüber T, Monjezi R, Wallstabe L, et al. Inhibition of TGF- β- Receptor signaling augments the antitumor function of ROR1-specific CAR T-cells against triple-negative breast cancer. J ImmunoTher Cancer. 2020;8:1–7. https://doi.org/10.1136/jitc-2020-000676.

    Article  Google Scholar 

  167. Hargadon K. Dysregulation of TGFβ1 Activity in Cancer and Its Influence on the Quality of Anti-Tumor Immunity. J Clin Med. 2016;5:76. https://doi.org/10.3390/jcm5090076.

    Article  CAS  PubMed Central  Google Scholar 

  168. Silzle T, Kreutz M, Dobler MA, et al. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol. 2003;33:1311–20. https://doi.org/10.1002/eji.200323057.

    Article  CAS  PubMed  Google Scholar 

  169. Cohen N, Shani O, Raz Y, et al. Fibroblasts drive an immunosuppressive and growth-promoting microenvironment in breast cancer via secretion of Chitinase 3-like 1. Oncog. 2017;36:4457–68. https://doi.org/10.1038/onc.2017.65.

    Article  CAS  Google Scholar 

  170. Piersma B, Hayward MK and Weaver VM. Fibrosis and cancer: A strained relationship. Biochimica et Biophysica Acta - Rev Cancer. 2020;1873. https://doi.org/10.1016/j.bbcan.2020.188356.

  171. Glentis A, Oertle P, Mariani P, et al. Correction: Cancer-associated fibroblasts induce metalloprotease-independent cancer cell invasion of the basement membrane. Nat Commun. 2018;9:75005. https://doi.org/10.1038/s41467-018-03304-x.

    Article  CAS  Google Scholar 

  172. Yamashita M, Ogawa T, Zhang X, et al. Role of stromal myofibroblasts in invasive breast cancer: Stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer. 2012;19:170–6. https://doi.org/10.1007/s12282-010-0234-5.

    Article  PubMed  Google Scholar 

  173. Paulsson J, Sjöblom T, Micke P, et al. Prognostic significance of stromal platelet-derived growth factor β-receptor expression in human breast cancer. Am J Pathol. 2009;175:334–41. https://doi.org/10.2353/ajpath.2009.081030.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Ariga N, Sato E, Ohuchi N, et al. Stromal expression of fibroblast activation protein / seprase, a cell membrane serine proteinase and gelatinase, is associated with longer survival in patients with invasive ductal. Int J Cancer. 2001;95:67–72. https://doi.org/10.1002/1097-0215(20010120)95:1%3c67::aid-ijc1012%3e3.0.co;2-u.

    Article  CAS  PubMed  Google Scholar 

  175. Kim HM, Jung WH, Koo JS. Expression of cancer-associated fibroblast related proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med. 2015;13:222. https://doi.org/10.1186/s12967-015-0587-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ao Z, Shah SH, Machlin LM, et al. Identification of cancer-associated fibroblasts in circulating blood from patients with metastatic breast cancer. Can Res. 2015;75:4681–7. https://doi.org/10.1158/0008-5472.CAN-15-1633.

    Article  CAS  Google Scholar 

  177. Schoppmann SF, Berghoff A, Dinhof C, et al. Podoplanin-expressing cancer-associated fibroblasts are associated with poor prognosis in invasive breast cancer. Breast Cancer Res Treat. 2012;134:237–44. https://doi.org/10.1007/s10549-012-1984-x.

    Article  CAS  PubMed  Google Scholar 

  178. Cai D, Wu X, Hong T, et al. CD61+ and CAF+ were found to be good prognosis factors for invasive breast cancer patients. Pathol Res Pract. 2017;213:1296–301. https://doi.org/10.1016/j.prp.2017.06.016.

    Article  CAS  PubMed  Google Scholar 

  179. Amornsupak K, Jamjuntra P, Warnnissorn M, et al. High ASMA+Fibroblasts and Low Cytoplasmic HMGB1+Breast Cancer Cells Predict Poor Prognosis. Clin Breast Cancer. 2017;17:441–52. https://doi.org/10.1016/j.clbc.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  180. Brechbuhl HM, Barrett AS, Kopin E, et al. Fibroblast subtypes define a metastatic matrisome in breast cancer. JCI Insight. 2020;5:1–16. https://doi.org/10.1172/jci.insight.130751.

    Article  Google Scholar 

  181. Martinez LM, Labovsky V, De Lujan CM, et al. CD105 expression on CD34-negative spindle-shaped stromal cells of primary tumor is an unfavorable prognostic marker in early breast cancer patients. PLoS ONE. 2015;10:1993–6. https://doi.org/10.1371/journal.pone.0121421.

    Article  CAS  Google Scholar 

  182. Labovsky V, Martinez LM, Calcagno M de L, et al. Interleukin-6 receptor in spindle-shaped stromal cells, a prognostic determinant of early breast cancer. Tumor Biol. 2016;37:13377–84. https://doi.org/10.1007/s13277-016-5268-7.

  183. Wallace JA, Li F, Leone G, et al. Pten in the breast tumor microenvironment: Modeling tumor-stroma coevolution. Can Res. 2011;71:1203–7. https://doi.org/10.1158/0008-5472.CAN-10-3263.

    Article  CAS  Google Scholar 

  184. Tchou J, Kossenkov AV, Chang L, et al. Human breast cancer associated fibroblasts exhibit subtype specific gene expression profiles. BMC Med Genomics. 2012;5:39. https://doi.org/10.1186/1755-8794-5-39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Busch S, Andersson D, Bom E, et al. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol Cancer. 2017;16:1–12. https://doi.org/10.1186/s12943-017-0642-7.

    Article  CAS  Google Scholar 

  186. Konieczkowski DJ, Johannessen CM, Garraway LA, et al. A convergence-based framework for cancer drug resistance. Cancer Cell. 2019;33:801–15. https://doi.org/10.1016/j.ccell.2018.03.025.A.

    Article  Google Scholar 

  187. Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018. https://doi.org/10.1038/s41571-018-0007-1.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Loeffler M, Krüger JA, Niethammer AG, et al. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J Clin Investig. 2009;119:421–421. https://doi.org/10.1172/jci26532c1.

    Article  CAS  PubMed Central  Google Scholar 

  189. Fang J, Xiao L, Joo K Il, et al. A potent immunotoxin targeting fibroblast activation protein for treatment of breast cancer in mice. Int J Cancer. 2016;138:1013–23. https://doi.org/10.1002/ijc.29831.

  190. Su S, Chen J, Yao H, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172(841–856):e16. https://doi.org/10.1016/j.cell.2018.01.009.

    Article  CAS  Google Scholar 

  191. Boesch M, Onder L, Cheng HW, et al. Interleukin 7-expressing fibroblasts promote breast cancer growth through sustenance of tumor cell stemness. OncoImmunology. 2018;7:e1414129. https://doi.org/10.1080/2162402X.2017.1414129.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Chauhan VP, Martin JD, Liu H, et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun. 2013;4:2516. https://doi.org/10.1038/ncomms3516.

    Article  CAS  PubMed  Google Scholar 

  193. Hu C, Liu X, Ran W, et al. Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer. Biomaterials. 2017;144:60–72. https://doi.org/10.1016/j.biomaterials.2017.08.009.

    Article  CAS  PubMed  Google Scholar 

  194. Ryan D, Koziol J, ElShamy WM. Targeting AXL and RAGE to prevent geminin overexpression-induced triple-negative breast cancer metastasis. Sci Rep. 2019;9:1–19. https://doi.org/10.1038/s41598-019-55702-w.

    Article  CAS  Google Scholar 

  195. Egeland EV, Boye K, Park D, et al. Prognostic significance of S100A4-expression and subcellular localization in early-stage breast cancer. Breast Cancer Res Treat. 2017;162:127–37. https://doi.org/10.1007/s10549-016-4096-1.

    Article  CAS  PubMed  Google Scholar 

  196. Boye K, Mælandsmo GM. S100A4 and metastasis: A small actor playing many roles. Am J Pathol. 2010;176:528–35. https://doi.org/10.2353/ajpath.2010.090526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Leconet W, Chentouf M, Du Manoir S, et al. Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 2017;23:2806–16. https://doi.org/10.1158/1078-0432.CCR-16-1316.

    Article  CAS  PubMed  Google Scholar 

  198. Wu X, Liu X, Koul S, et al. AXL kinase as a novel target for cancer therapy. Oncotarget. 2014;5:9546–63. https://doi.org/10.18632/oncotarget.2542.

  199. Park JS, Lee CH, Kim HK, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308–18. https://doi.org/10.18632/oncotarget.13088.

  200. Wang C, Jin H, Wang N, et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β- catenin signaling. Theranostics. 2016;6:1205–19. https://doi.org/10.7150/thno.15083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ye X, Li Y, Stawicki S, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncog. 2010;29:5254–64. https://doi.org/10.1038/onc.2010.268.

    Article  CAS  Google Scholar 

  202. Hudson BI, Lippman ME. Targeting RAGE Signaling in Inflammatory Disease. Annu Rev Med. 2018;69:349–64. https://doi.org/10.1146/annurev-med-041316-085215.

    Article  CAS  PubMed  Google Scholar 

  203. El-Far AH, Sroga G, Al Jaouni SK, et al. Role and mechanisms of rage-ligand complexes and rage-inhibitors in cancer progression. Int J Mol Sci. 2020;21:1–21. https://doi.org/10.3390/ijms21103613.

    Article  CAS  Google Scholar 

  204. Hollosi P, Yakushiji JK, Fong KSK, et al. Lysyl oxidase-like 2 promotes migration in noninvasive breast cancer cells but not in normal breast epithelial cells. Int J Cancer. 2009;125:318–27. https://doi.org/10.1002/ijc.24308.

    Article  CAS  PubMed  Google Scholar 

  205. Barker HE, Chang J, Cox TR, et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Can Res. 2011;71:1561–72. https://doi.org/10.1158/0008-5472.CAN-10-2868.

    Article  CAS  Google Scholar 

  206. Barker HE, Bird D, Lang G, et al. Tumor-secreted LOXL2 activates fibroblasts through fak signaling. Mol Cancer Res. 2013;11:1425–36. https://doi.org/10.1158/1541-7786.MCR-13-0033-T.

    Article  CAS  PubMed  Google Scholar 

  207. Takai K, Le A, Weaver VM, et al. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889–901. https://doi.org/10.18632/oncotarget.12658.

  208. Al-Harbi B, Hendrayani SF, Silva G, et al. Let-7b inhibits cancer-promoting effects of breast cancerassociated fibroblasts through IL-8 repression. Oncotarget. 2018;9:17825–38. https://doi.org/10.18632/oncotarget.24895.

  209. Casey TM, Eneman J, Crocker A, et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: A population study. Breast Cancer Res Treat. 2008;110:39–49. https://doi.org/10.1007/s10549-007-9684-7.

    Article  CAS  PubMed  Google Scholar 

  210. Rønnov-Jessen L PO. Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest. 1993;68:696–707.

  211. Desmouliere A, Geinoz A, Gabbiani F, et al. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103–11. https://doi.org/10.1083/jcb.122.1.103.

    Article  CAS  PubMed  Google Scholar 

  212. Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 2003;113:685–700. https://doi.org/10.1016/S0092-8674(03)00432-X.

    Article  CAS  PubMed  Google Scholar 

  213. Xu J, Lu Y, Qiu S, et al. A novel role of EMMPRIN/CD147 in transformation of quiescent fibroblasts to cancer-associated fibroblasts by breast cancer cells. Cancer Lett. 2013;335:380–6. https://doi.org/10.1016/j.canlet.2013.02.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thanks the National Agency of Scientific and Technological Promotion, Argentina; the National Council of Scientific and Technical Research, Argentina; Alberto Roemmers Foundation, Argentina; René Barón Foundation, Argentina and Williams Foundation, Argentina.

Author information

Authors and Affiliations

Authors

Contributions

María Belén Giorello, performed the literature search, organize and wrote the review, designed the figures. Francisco Raúl Borzone, critical revised the review. Vivian Labovsky, Critical revised the review. Flavia Valeria Piccioni, designed the figures and critical revised the review. Norma Alejandra Chasseing, had the idea. Performed the literature search, organize and wrote the review, designed the figures together with María Belén Giorello, both corresponding authors.

Corresponding authors

Correspondence to María Belén Giorello or Norma Alejandra Chasseing.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Approval

This is a review article and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorello, M.B., Borzone, F.R., Labovsky, V. et al. Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment. J Mammary Gland Biol Neoplasia 26, 135–155 (2021). https://doi.org/10.1007/s10911-020-09475-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09475-y

Keywords

Navigation