Skip to main content

Advertisement

Log in

Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Several recent papers have now provided compelling experimental evidence that the progression of tumours towards a malignant phenotype does not depend exclusively on the cell-autonomous properties of cancer cells themselves but is also deeply influenced by tumour stroma reactivity, thereby undergoing a strict environmental control. Tumour microenvironmental elements include structural components such as the extracellular matrix or hypoxia as well as stromal cells, either resident cells or recruited from circulating precursors, as macrophages and other inflammatory cells, endothelial cells and cancer-associated fibroblasts (CAFs). All these elements synergistically play a specific role in cancer progression. This review summarizes our current knowledge on the role of CAFs in tumour progression, with a particular focus on the biunivocal interplay between CAFs and cancer cells leading to the activation of the epithelial–mesenchymal transition programme and the achievement of stem cell traits, as well as to the metabolic reprogramming of both stromal and cancer cells. Recent advances on the role of CAFs in the preparation of metastatic niche, as well as the controversial origin of CAFs, are discussed in light of the new emerging therapeutic implications of targeting CAFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gabbiani, G., Ryan, G. B., & Majne, G. (1971). Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia, 27(5), 549–550.

    Article  PubMed  CAS  Google Scholar 

  2. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews. Molecular Cell Biology, 3(5), 349–363.

    Article  PubMed  CAS  Google Scholar 

  3. Desmouliere, A., Redard, M., Darby, I., & Gabbiani, G. (1995). Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. American Journal of Pathology, 146(1), 56–66.

    PubMed  CAS  Google Scholar 

  4. Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.

    Article  PubMed  CAS  Google Scholar 

  5. Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  6. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6(5), 392–401.

    Article  PubMed  CAS  Google Scholar 

  7. Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.

    Article  PubMed  CAS  Google Scholar 

  8. Micke, P., & Ostman, A. (2004). Tumour–stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer, 45(Suppl 2), S163–S175.

    Article  PubMed  Google Scholar 

  9. O’Brien, P., & O’Connor, B. F. (2008). Seprase: An overview of an important matrix serine protease. Biochimica et Biophysica Acta, 1784(9), 1130–1145.

    PubMed  Google Scholar 

  10. Hasebe, T., Tamura, N., Okada, N., Hojo, T., Akashi-Tanaka, S., Shimizu, C., et al. (2010). p53 expression in tumor-stromal fibroblasts is closely associated with the nodal metastasis and outcome of patients with invasive ductal carcinoma who received neoadjuvant therapy. Human Pathology, 41(2), 262–270.

    Article  PubMed  CAS  Google Scholar 

  11. Nakao, M., Ishii, G., Nagai, K., Kawase, A., Kenmotsu, H., Kon-No, H., et al. (2009). Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer, 115(12), 2732–2743.

    Article  PubMed  CAS  Google Scholar 

  12. Utispan, K., Thuwajit, P., Abiko, Y., Charngkaew, K., Paupairoj, A., Chau-in, S., et al. (2010). Gene expression profiling of cholangiocarcinoma-derived fibroblast reveals alterations related to tumor progression and indicates periostin as a poor prognostic marker. Molecular Cancer, 9, 13.

    Article  PubMed  CAS  Google Scholar 

  13. Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., et al. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. American Journal of Pathology, 174(6), 2023–2034.

    Article  PubMed  CAS  Google Scholar 

  14. Yamanashi, T., Nakanishi, Y., Fujii, G., Akishima-Fukasawa, Y., Moriya, Y., Kanai, Y., et al. (2009). Podoplanin expression identified in stromal fibroblasts as a favorable prognostic marker in patients with colorectal carcinoma. Oncology, 77(1), 53–62.

    Article  PubMed  CAS  Google Scholar 

  15. Trimboli, A. J., Cantemir-Stone, C. Z., Li, F., Wallace, J. A., Merchant, A., Creasap, N., et al. (2009). Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature, 461(7267), 1084–1091.

    Article  PubMed  CAS  Google Scholar 

  16. Hill, R., Song, Y., Cardiff, R. D., & van, D. T. (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell, 123(6), 1001–1011.

    Article  PubMed  CAS  Google Scholar 

  17. Kiaris, H., Chatzistamou, I., Trimis, G., Frangou-Plemmenou, M., Pafiti-Kondi, A., & Kalofoutis, A. (2005). Evidence for nonautonomous effect of p53 tumor suppressor in carcinogenesis. Cancer Research, 65(5), 1627–1630.

    Article  PubMed  CAS  Google Scholar 

  18. Anderberg, C., & Pietras, K. (2009). On the origin of cancer-associated fibroblasts. Cell Cycle, 8(10), 1461–1462.

    Article  PubMed  CAS  Google Scholar 

  19. Hinz, B., Phan, S. H., Thannickal, V. J., Galli, A., Bochaton-Piallat, M. L., & Gabbiani, G. (2007). The myofibroblast: One function, multiple origins. American Journal of Pathology, 170(6), 1807–1816.

    Article  PubMed  CAS  Google Scholar 

  20. McAnulty, R. J. (2007). Fibroblasts and myofibroblasts: Their source, function and role in disease. The International Journal of Biochemistry & Cell Biology, 39(4), 666–671.

    Article  CAS  Google Scholar 

  21. Ostman, A., & Augsten, M. (2009). Cancer-associated fibroblasts and tumor growth—Bystanders turning into key players. Current Opinion in Genetics and Development, 19(1), 67–73.

    Article  PubMed  CAS  Google Scholar 

  22. De, W. O., & Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. The Journal of Pathology, 200(4), 429–447.

    Article  CAS  Google Scholar 

  23. Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., et al. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70(17), 6945–6956.

    Article  PubMed  CAS  Google Scholar 

  24. Lohr, M., Schmidt, C., Ringel, J., Kluth, M., Muller, P., Nizze, H., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.

    PubMed  CAS  Google Scholar 

  25. Bronzert, D. A., Pantazis, P., Antoniades, H. N., Kasid, A., Davidson, N., Dickson, R. B., et al. (1987). Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proceedings of the National Academy of Sciences of the United States of America, 84(16), 5763–5767.

    Article  PubMed  CAS  Google Scholar 

  26. Shao, Z. M., Nguyen, M., & Barsky, S. H. (2000). Human breast carcinoma desmoplasia is PDGF initiated. Oncogene, 19(38), 4337–4345.

    Article  PubMed  CAS  Google Scholar 

  27. Strutz, F., Zeisberg, M., Hemmerlein, B., Sattler, B., Hummel, K., Becker, V., et al. (2000). Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney International, 57(4), 1521–1538.

    Article  PubMed  CAS  Google Scholar 

  28. Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkotter, O., Sies, H., et al. (2006). Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. Journal of Cell Science, 119(Pt 13), 2727–2738.

    Article  PubMed  CAS  Google Scholar 

  29. Stuhlmann, D., Steinbrenner, H., Wendlandt, B., Mitic, D., Sies, H., & Brenneisen, P. (2004). Paracrine effect of TGF-beta1 on downregulation of gap junctional intercellular communication between human dermal fibroblasts. Biochemical and Biophysical Research Communications, 319(2), 321–326.

    Article  PubMed  CAS  Google Scholar 

  30. Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a pro-inflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidand & Redox Signaling, 14, 2361–2371.

    Article  CAS  Google Scholar 

  31. Toullec, A., Gerald, D., Despouy, G., Bourachot, B., Cardon, M., Lefort, S., et al. (2010). Oxidative stress promotes myofibroblast differentiation and tumour spreading. EMBO Molecular Medicine, 2(6), 211–230.

    Article  PubMed  CAS  Google Scholar 

  32. Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.

    Article  PubMed  Google Scholar 

  33. Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.

    Article  PubMed  CAS  Google Scholar 

  34. Assoian, R. K., & Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends in Cell Biology, 18(7), 347–352.

    Article  PubMed  CAS  Google Scholar 

  35. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.

    Article  PubMed  CAS  Google Scholar 

  36. Chun, T. H., Hotary, K. B., Sabeh, F., Saltiel, A. R., Allen, E. D., & Weiss, S. J. (2006). A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell, 125(3), 577–591.

    Article  PubMed  CAS  Google Scholar 

  37. Huijbers, I. J., Iravani, M., Popov, S., Robertson, D., Al-Sarraj, S., Jones, C., et al. (2010). A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion. PLoS One, 5(3), e9808.

    Article  PubMed  CAS  Google Scholar 

  38. Kauppila, S., Stenback, F., Risteli, J., Jukkola, A., & Risteli, L. (1998). Aberrant type I and type III collagen gene expression in human breast cancer in vivo. The Journal of Pathology, 186(3), 262–268.

    Article  PubMed  CAS  Google Scholar 

  39. Hasebe, T., Sasaki, S., Imoto, S., Mukai, K., Yokose, T., & Ochiai, A. (2002). Prognostic significance of fibrotic focus in invasive ductal carcinoma of the breast: A prospective observational study. Modern Pathology, 15(5), 502–516.

    Article  PubMed  Google Scholar 

  40. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed  CAS  Google Scholar 

  41. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., et al. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.

    Article  PubMed  CAS  Google Scholar 

  42. Santhanam, A. N., Baker, A. R., Hegamyer, G., Kirschmann, D. A., & Colburn, N. H. (2010). Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene, 29(27), 3921–3932.

    Article  PubMed  CAS  Google Scholar 

  43. Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., et al. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324(5933), 1457–1461.

    Article  PubMed  CAS  Google Scholar 

  44. Shieh, A. C., Rozansky, H. A., Hinz, B., & Swartz, M. A. (2011). Tumor cell invasion is promoted by interstitial flow-induced matrix priming by stromal fibroblasts. Cancer Research, 71(3), 790–800.

    Article  PubMed  CAS  Google Scholar 

  45. Gaggioli, C., Hooper, S., Hidalgo-Carcedo, C., Grosse, R., Marshall, J. F., Harrington, K., et al. (2007). Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nature Cell Biology, 9(12), 1392–1400.

    Article  PubMed  CAS  Google Scholar 

  46. Plow, E. F., Haas, T. A., Zhang, L., Loftus, J., & Smith, J. W. (2000). Ligand binding to integrins. Journal of Biological Chemistry, 275(29), 21785–21788.

    Article  PubMed  CAS  Google Scholar 

  47. Velling, T., Risteli, J., Wennerberg, K., Mosher, D. F., & Johansson, S. (2002). Polymerization of type I and III collagens is dependent on fibronectin and enhanced by integrins alpha 11beta 1 and alpha 2beta 1. Journal of Biological Chemistry, 277(40), 37377–37381.

    Article  PubMed  CAS  Google Scholar 

  48. Pankov, R., & Yamada, K. M. (2002). Fibronectin at a glance. Journal of Cell Science, 115(Pt 20), 3861–3863.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, S. H., Lin, C. Y., Lee, L. T., Chang, G. D., Lee, P. P., Hung, C. C., et al. (2010). Up-regulation of fibronectin and tissue transglutaminase promotes cell invasion involving increased association with integrin and MMP expression in A431 cells. Anticancer Research, 30(10), 4177–4186.

    PubMed  CAS  Google Scholar 

  50. Mitra, A. K., Sawada, K., Tiwari, P., Mui, K., Gwin, K., & Lengyel, E. (2011). Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene, 30(13), 1566–1576.

    Article  PubMed  CAS  Google Scholar 

  51. Kobayashi, N., Miyoshi, S., Mikami, T., Koyama, H., Kitazawa, M., Takeoka, M., et al. (2010). Hyaluronan deficiency in tumor stroma impairs macrophage trafficking and tumor neovascularization. Cancer Research, 70(18), 7073–7083.

    Article  PubMed  CAS  Google Scholar 

  52. Wang, W., Li, Q., Yamada, T., Matsumoto, K., Matsumoto, I., Oda, M., et al. (2009). Crosstalk to stromal fibroblasts induces resistance of lung cancer to epidermal growth factor receptor tyrosine kinase inhibitors. Clinical Cancer Research, 15(21), 6630–6638.

    Article  PubMed  CAS  Google Scholar 

  53. Jedeszko, C., Victor, B. C., Podgorski, I., & Sloane, B. F. (2009). Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Research, 69(23), 9148–9155.

    Article  PubMed  CAS  Google Scholar 

  54. Matsumoto, K., & Nakamura, T. (2006). Hepatocyte growth factor and the Met system as a mediator of tumor–stromal interactions. International Journal of Cancer, 119(3), 477–483.

    Article  CAS  Google Scholar 

  55. Matsumoto, K., Okazaki, H., & Nakamura, T. (1995). Novel function of prostaglandins as inducers of gene expression of HGF and putative mediators of tissue regeneration. Journal of Biochemistry, 117(2), 458–464.

    Article  PubMed  CAS  Google Scholar 

  56. Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303(5659), 848–851.

    Article  PubMed  CAS  Google Scholar 

  57. Gerber, P. A., Hippe, A., Buhren, B. A., Muller, A., & Homey, B. (2009). Chemokines in tumor-associated angiogenesis. Biological Chemistry, 390(12), 1213–1223.

    Article  PubMed  CAS  Google Scholar 

  58. Matsuo, Y., Ochi, N., Sawai, H., Yasuda, A., Takahashi, H., Funahashi, H., et al. (2009). CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. International Journal of Cancer, 124(4), 853–861.

    Article  CAS  Google Scholar 

  59. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121(3), 335–348.

    Article  PubMed  CAS  Google Scholar 

  60. Augsten, M., Hagglof, C., Olsson, E., Stolz, C., Tsagozis, P., Levchenko, T., et al. (2009). CXCL14 is an autocrine growth factor for fibroblasts and acts as a multi-modal stimulator of prostate tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3414–3419.

    Article  PubMed  CAS  Google Scholar 

  61. Erez, N., Truitt, M., Olson, P., Arron, S. T., & Hanahan, D. (2010). Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell, 17(2), 135–147.

    Article  PubMed  CAS  Google Scholar 

  62. Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. Science, 326(5957), 1216–1219.

    Article  PubMed  CAS  Google Scholar 

  63. Roy, R., Yang, J., & Moses, M. A. (2009). Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. Journal of Clinical Oncology, 27(31), 5287–5297.

    Article  PubMed  CAS  Google Scholar 

  64. Vosseler, S., Lederle, W., Airola, K., Obermueller, E., Fusenig, N. E., & Mueller, M. M. (2009). Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. International Journal of Cancer, 125(10), 2296–2306.

    Article  CAS  Google Scholar 

  65. Lederle, W., Hartenstein, B., Meides, A., Kunzelmann, H., Werb, Z., Angel, P., et al. (2010). MMP13 as a stromal mediator in controlling persistent angiogenesis in skin carcinoma. Carcinogenesis, 31(7), 1175–1184.

    Article  PubMed  CAS  Google Scholar 

  66. Dean, J. P., & Nelson, P. S. (2008). Profiling influences of senescent and aged fibroblasts on prostate carcinogenesis. British Journal of Cancer, 98(2), 245–249.

    Article  PubMed  CAS  Google Scholar 

  67. Blasi, F., & Sidenius, N. (2010). The urokinase receptor: Focused cell surface proteolysis, cell adhesion and signaling. FEBS Letters, 584(9), 1923–1930.

    Article  PubMed  CAS  Google Scholar 

  68. Noskova, V., Ahmadi, S., Asander, E., & Casslen, B. (2009). Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecologic Oncology, 115(1), 121–126.

    Article  PubMed  CAS  Google Scholar 

  69. Coppe, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118.

    Article  PubMed  CAS  Google Scholar 

  70. Davalos, A. R., Coppe, J. P., Campisi, J., & Desprez, P. Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Reviews, 29(2), 273–283.

    Article  PubMed  Google Scholar 

  71. Laberge, R. M., Awad, P., Campisi, J., & Desprez, P. Y. (2011). Epithelial–mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. doi:10.1007/s12307-011-0069-4.

  72. Lee, C. (1996). Role of androgen in prostate growth and regression: Stromal–epithelial interaction. The Prostate. Supplement, 6, 52–56.

    Article  PubMed  CAS  Google Scholar 

  73. Chang, S. M., & Chung, L. W. (1989). Interaction between prostatic fibroblast and epithelial cells in culture: Role of androgen. Endocrinology, 125(5), 2719–2727.

    Article  PubMed  CAS  Google Scholar 

  74. Cano, P., Godoy, A., Escamilla, R., Dhir, R., & Onate, S. A. (2007). Stromal–epithelial cell interactions and androgen receptor–coregulator recruitment is altered in the tissue microenvironment of prostate cancer. Cancer Research, 67(2), 511–519.

    Article  PubMed  CAS  Google Scholar 

  75. Ricciardelli, C., Choong, C. S., Buchanan, G., Vivekanandan, S., Neufing, P., Stahl, J., et al. (2005). Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate, 63(1), 19–28.

    Article  PubMed  CAS  Google Scholar 

  76. Henshall, S. M., Quinn, D. I., Lee, C. S., Head, D. R., Golovsky, D., Brenner, P. C., et al. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Research, 61(2), 423–427.

    PubMed  CAS  Google Scholar 

  77. Zhao, Y., Nichols, J. E., Valdez, R., Mendelson, C. R., & Simpson, E. R. (1996). Tumor necrosis factor-alpha stimulates aromatase gene expression in human adipose stromal cells through use of an activating protein-1 binding site upstream of promoter 1.4. Molecular Endocrinology, 10(11), 1350–1357.

    Article  PubMed  CAS  Google Scholar 

  78. Simpson, E. R., & Davis, S. R. (2001). Minireview: Aromatase and the regulation of estrogen biosynthesis—Some new perspectives. Endocrinology, 142(11), 4589–4594.

    Article  PubMed  CAS  Google Scholar 

  79. Santen, R. J., Santner, S. J., Pauley, R. J., Tait, L., Kaseta, J., Demers, L. M., et al. (1997). Estrogen production via the aromatase enzyme in breast carcinoma: Which cell type is responsible? The Journal of Steroid Biochemistry and Molecular Biology, 61(3–6), 267–271.

    Article  PubMed  CAS  Google Scholar 

  80. Howell, A., Cuzick, J., Baum, M., Buzdar, A., Dowsett, M., Forbes, J. F., et al. (2005). Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet, 365(9453), 60–62.

    Article  PubMed  CAS  Google Scholar 

  81. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.

    Article  PubMed  CAS  Google Scholar 

  82. De, W. O., Demetter, P., Mareel, M., & Bracke, M. (2008). Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer, 123(10), 2229–2238.

    Article  CAS  Google Scholar 

  83. De Wever, O., Nguyen, Q. D., Van, H. L., Bracke, M., Bruyneel, E., Gespach, C., et al. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. The FASEB Journal, 18(9), 1016–1018.

    CAS  Google Scholar 

  84. Kalluri, R. (2009). EMT: When epithelial cells decide to become mesenchymal-like cells. The Journal of Clinical Investigation, 119(6), 1417–1419.

    Article  PubMed  CAS  Google Scholar 

  85. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890.

    Article  PubMed  CAS  Google Scholar 

  86. Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252.

    Article  PubMed  Google Scholar 

  87. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    Article  PubMed  CAS  Google Scholar 

  88. Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–446.

    Article  CAS  Google Scholar 

  89. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews. Cancer, 8(10), 755–768.

    Article  PubMed  CAS  Google Scholar 

  90. Liao, C. P., Adisetiyo, H., Liang, M., & Roy-Burman, P. (2010). Cancer-associated fibroblasts enhance the gland-forming capability of prostate cancer stem cells. Cancer Research, 70(18), 7294–7303.

    Article  PubMed  CAS  Google Scholar 

  91. Wu, Y., Deng, J., Rychahou, P. G., Qiu, S., Evers, B. M., & Zhou, B. P. (2009). Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 15(5), 416–428.

    Article  PubMed  CAS  Google Scholar 

  92. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436(7047), 123–127.

    Article  PubMed  CAS  Google Scholar 

  93. De, W. O., Pauwels, P., De, C. B., Sabbah, M., Emami, S., Redeuilh, G., et al. (2008). Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front. Histochemistry and Cell Biology, 130(3), 481–494.

    Article  CAS  Google Scholar 

  94. Patocs, A., Zhang, L., Xu, Y., Weber, F., Caldes, T., Mutter, G. L., et al. (2007). Breast-cancer stromal cells with TP53 mutations and nodal metastases. The New England Journal of Medicine, 357(25), 2543–2551.

    Article  PubMed  CAS  Google Scholar 

  95. Jones, R. G., & Thompson, C. B. (2009). Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes & Development, 23(5), 537–548.

    Article  CAS  Google Scholar 

  96. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  97. Christofk, H. R., Vander Heiden, M. G., Harris, M. H., Ramanathan, A., Gerszten, R. E., Wei, R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.

    Article  PubMed  CAS  Google Scholar 

  98. Vander Heiden, M. G., Locasale, J. W., Swanson, K. D., Sharfi, H., Heffron, G. J., Amador-Noguez, D., et al. (2010). Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science, 329(5998), 1492–1499.

    Article  PubMed  CAS  Google Scholar 

  99. Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., et al. (2011). Pyruvate kinase M2 Is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell, 145(5), 732–744.

    Article  PubMed  CAS  Google Scholar 

  100. Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A. K., Frank, P. G., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.

    Article  PubMed  CAS  Google Scholar 

  101. Martinez-Outschoorn, U. E., Trimmer, C., Lin, Z., Whitaker-Menezes, D., Chiavarina, B., Zhou, J., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.

    Article  PubMed  CAS  Google Scholar 

  102. Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.

    Article  PubMed  CAS  Google Scholar 

  103. Garzon, R., Marcucci, G., & Croce, C. M. (2010). Targeting microRNAs in cancer: Rationale, strategies and challenges. Nature Reviews. Drug Discovery, 9(10), 775–789.

    Article  PubMed  CAS  Google Scholar 

  104. Tazawa, H., Kagawa, S., & Fujiwara, T. (2011). MicroRNAs as potential target gene in cancer gene therapy of gastrointestinal tumors. Expert Opinion on Biological Therapy, 11(2), 145–155.

    Article  PubMed  CAS  Google Scholar 

  105. Musumeci, M., Coppola, V., Addario, A., Patrizii, M., Maugeri-Sacca, M., Memeo, L., et al. (2011). Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene, 30, 4231–4242.

    Article  PubMed  CAS  Google Scholar 

  106. Nielsen, B. S., Jorgensen, S., Fog, J. U., Sokilde, R., Christensen, I. J., Hansen, U., et al. (2011). High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients. Clinical & Experimental Metastasis, 28(1), 27–38.

    Article  CAS  Google Scholar 

  107. Yao, Q., Cao, S., Li, C., Mengesha, A., Kong, B., & Wei, M. (2011). Micro-RNA-21 regulates TGF-beta-induced myofibroblast differentiation by targeting PDCD4 in tumor–stroma interaction. International Journal of Cancer, 128(8), 1783–1792.

    Article  CAS  Google Scholar 

  108. Aprelikova, O., Yu, X., Palla, J., Wei, B. R., John, S., Yi, M., et al. (2010). The role of miR-31 and its target gene SATB2 in cancer-associated fibroblasts. Cell Cycle, 9(21), 4387–4398.

    Article  PubMed  CAS  Google Scholar 

  109. Lim, P. K., Bliss, S. A., Patel, S. A., Taborga, M., Dave, M. A., Gregory, L. A., et al. (2011). Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Research, 71(5), 1550–1560.

    Article  PubMed  CAS  Google Scholar 

  110. Grange, C., Tapparo, M., Collino, F., Vitillo, L., Damasco, C., Deregibus, M. C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung pre-metastatic niche. Cancer Research, 71, 5346–5356.

    Article  PubMed  CAS  Google Scholar 

  111. Nguyen, D. X., Bos, P. D., & Massague, J. (2009). Metastasis: From dissemination to organ-specific colonization. Nature Reviews. Cancer, 9(4), 274–284.

    Article  PubMed  CAS  Google Scholar 

  112. Tu, S. M., Lin, S. H., & Logothetis, C. J. (2002). Stem-cell origin of metastasis and heterogeneity in solid tumours. The Lancet Oncology, 3(8), 508–513.

    Article  PubMed  CAS  Google Scholar 

  113. Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.

    Article  PubMed  CAS  Google Scholar 

  114. Duda, D. G., Duyverman, A. M., Kohno, M., Snuderl, M., Steller, E. J., Fukumura, D., et al. (2010). Malignant cells facilitate lung metastasis by bringing their own soil. Proceedings of the National Academy of Sciences of the United States of America, 107, 21677–21682.

    Article  PubMed  CAS  Google Scholar 

  115. Sung, S. Y., Hsieh, C. L., Law, A., Zhau, H. E., Pathak, S., Multani, A. S., et al. (2008). Coevolution of prostate cancer and bone stroma in three-dimensional coculture: Implications for cancer growth and metastasis. Cancer Research, 68(23), 9996–10003.

    Article  PubMed  CAS  Google Scholar 

  116. Pietras, K., Pahler, J., Bergers, G., & Hanahan, D. (2008). Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Medicine, 5(1), e19.

    Article  PubMed  CAS  Google Scholar 

  117. Wu, M. P., Young, M. J., Tzeng, C. C., Tzeng, C. R., Huang, K. F., Wu, L. W., et al. (2008). A novel role of thrombospondin-1 in cervical carcinogenesis: Inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer. Carcinogenesis, 29(6), 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  118. Wen, J., Matsumoto, K., Taniura, N., Tomioka, D., & Nakamura, T. (2004). Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Therapy, 11(6), 419–430.

    Article  PubMed  CAS  Google Scholar 

  119. Kim, K. J., Wang, L., Su, Y. C., Gillespie, G. Y., Salhotra, A., Lal, B., et al. (2006). Systemic anti-hepatocyte growth factor monoclonal antibody therapy induces the regression of intracranial glioma xenografts. Clinical Cancer Research, 12(4), 1292–1298.

    Article  PubMed  CAS  Google Scholar 

  120. Crawford, Y., Kasman, I., Yu, L., Zhong, C., Wu, X., Modrusan, Z., et al. (2009). PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell, 15(1), 21–34.

    Article  PubMed  CAS  Google Scholar 

  121. Sato, N., Maehara, N., & Goggins, M. (2004). Gene expression profiling of tumor–stromal interactions between pancreatic cancer cells and stromal fibroblasts. Cancer Research, 64(19), 6950–6956.

    Article  PubMed  CAS  Google Scholar 

  122. Hu, M., Peluffo, G., Chen, H., Gelman, R., Schnitt, S., & Polyak, K. (2009). Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3372–3377.

    Article  PubMed  CAS  Google Scholar 

  123. Mann, J., Oakley, F., Akiboye, F., Elsharkawy, A., Thorne, A. W., & Mann, D. A. (2007). Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: Implications for wound healing and fibrogenesis. Cell Death and Differentiation, 14(2), 275–285.

    Article  PubMed  CAS  Google Scholar 

  124. Scott, A. M., Wiseman, G., Welt, S., Adjei, A., Lee, F. T., Hopkins, W., et al. (2003). A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clinical Cancer Research, 9(5), 1639–1647.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Chiarugi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirri, P., Chiarugi, P. Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31, 195–208 (2012). https://doi.org/10.1007/s10555-011-9340-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-011-9340-x

Keywords

Navigation