Skip to main content

Advertisement

Log in

Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: a population study

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Cancer associated fibroblasts (CAFs) are believed to promote tumor growth and progression. Our objective was to measure the effect of TGF-β1 on fibroblasts isolated from invasive breast cancer patients. Fibroblasts were isolated from tissue obtained at surgery from patients with invasive breast cancer (CAF; n = 28) or normal reduction mammoplasty patients (normal; n = 10). Myofibroblast activation was measured by counting cells immunostained for smooth muscle alpha actin (ACTA2) in cultures ± TGF-β1. Conditioned media (CM) was collected for invasion assays and RNA was isolated from cultures incubated in media ± TGF-β1 for 24 h. Q-PCR was used to measure expression of cyclin D1, fibronectin, laminin, collagen I, urokinase, stromelysin-1, and ACTA2 genes. Invasion rate was measured in chambers plated with MDA-MB-231 cells and exposed to CM in the bottom chamber; the number of cells that invaded into the bottom chamber was counted. Wilcox Rank Sum tests were used to evaluate differences in CAFs and normal fibroblasts and the effect of TGF-β1. There was no difference in percent myofibroblasts or invasion rate between normal and CAF cultures. However, TGF-β1 significantly increased the percent of myofibroblasts (P < 0.01) and invasion rate (P = 0.02) in CAF cultures. Stromelysin-1 expression was significantly higher in normal versus CAF cultures (P < 0.01). TGF-β1 significantly increased ACTA2 expression in both normal and CAF cultures (P < 0.01). Expression of fibronectin and laminin was significantly increased by TGF-β in CAF cultures (P < 0.01). CAFs were measurably different from normal fibroblasts in response to TGF-β1, suggesting that TGF-β stimulates changes in CAFs that foster tumor invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CAF:

Cancer associated fibroblast

TGF-β:

Transforming growth factor-beta

ECM:

Extracellular matrix

FBS:

Fetal bovive serum

BM:

Basal media

CM:

Conditioned media

ACTA2:

Smooth muscle alpha actin

CCND1:

Cyclin D1

FN1:

Fibronectin

LAMA1:

Laminin

COL1A1:

Collagen I

MMP3:

Stromelysin-1

PLAU:

Urokinase

RQ:

Relative expression

CT:

Cycle threshold

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer Statistics, 2007. CA Cancer J Clin 57:43–66

    Article  PubMed  Google Scholar 

  2. Gupta GP, Massague J (2006) Cancer Metastasis: building a framework. Cell 127:679–695

    Article  PubMed  CAS  Google Scholar 

  3. Schnitt S, Guidi A (2000) Pathology of invasive breast cancer. In: Harris JR, Lippman ME, Murrow M, Osborn CK (eds) Diseases of the breast, 2nd edn. Lippincott, Williams, and Wilkins, NY, p 425

    Google Scholar 

  4. Radisky E, Radisky D (2007) Stromal induction of breast cancer: inflammation and invasion. Rev Endocr Metab Disord. doi: 10.1007/s11154-007-9037-1

  5. Noel A, Foidart J-M (1998) The role of stroma in breast carcinoma growth in vivo. J Mammary Gland Biol Neoplasia V3:215–225

    Article  Google Scholar 

  6. Tuxhorn JA, McAlhany SJ, Dang TD, Ayala GE, Rowley DR (2002) Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Cancer Res 62:3298–3307

    PubMed  CAS  Google Scholar 

  7. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  PubMed  CAS  Google Scholar 

  8. Condeelis J, Segall JE (2003) Intravital imaging of cell movement in tumours. Nat Rev Cancer 3:921–930

    Article  PubMed  CAS  Google Scholar 

  9. Robinson S, Silberstein G, Daniel CW (1992) Evidence supporting a role for TGF-beta isoforms in growth regulation and functional differentiation of the mouse mammary gland. In: Picciano MF, Lonnerdal B (eds) Mechanisms regulating lactation and infant nutrient utilization. Wiley-Liss, New York, pp 43–52

    Google Scholar 

  10. Faler B, Macsata R, Plummer D, Mishra L, Sidawy A (2006) Transforming growth factor-beta and wound healing. Perspect Vasc Surg Endovasc Ther 18:55–62

    Article  PubMed  Google Scholar 

  11. O’Kane S, Ferguson MWJ (1997) Transforming growth factor [beta]s and wound healing. Int J Biochem Cell Biol 29:63–78

    Article  PubMed  CAS  Google Scholar 

  12. Wahl SM (2007) Transforming growth factor-[beta]: innately bipolar. Curr Opin Immunol 19:55–62

    Article  PubMed  CAS  Google Scholar 

  13. Fleisch MC, Maxwell CA, Barcellos-Hoff M-H (2006) The pleiotropic roles of transforming growth factor beta in homeostasis and carcinogenesis of endocrine organs. Endocrinology 13:379–400

    CAS  Google Scholar 

  14. Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan R, Zborowska E, Kinzler K, Vogelstein B (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 268:1336–1338

    Article  PubMed  CAS  Google Scholar 

  15. Hahn S, Schutte M, Hoque A, Moskaluk C, da Costa L, Rozenblum E, Weinstein C, Fischer A, Yeo C, Hruban R, Kern S (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353

    Article  PubMed  CAS  Google Scholar 

  16. Grady W, Myeroff L, Swinler S, Rajput A, Thiagalingam S, Lutterbaugh J, Neumann A, Brattain M, Chang J, Kim S, Kinzler K, Vogelstein B, Willson J, Markowitz S (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 50:320–324

    Google Scholar 

  17. Grady W, Rajput A, Myeroff L, Liu D, Kwon K, Willis J, Markowitz S (1998) Mutation of the type II transforming growth factor-beta receptor is coincident with the transformation of human colon adenomas to malignant carcinomas. Cancer Res 58:3101–3104

    PubMed  CAS  Google Scholar 

  18. Barlow J, Yandell D, Weaver D, Casey T, Plaut K (2003) Higher stromal expression of transforming growth factor-beta type II receptors is associated with poorer prognosis breast tumors. Breast Cancer Res Treat 79:149–159

    Article  PubMed  CAS  Google Scholar 

  19. Tomita S, Deguchi S, Miyaguni T, Muto Y, Tamamoto T, Toda T (1999) Analyses of microsatellite instability and the transforming growth factor-beta receptor type II gene mutation in sporadic breast cancer and their correlation with clinicopathological features. Breast Cancer Res Treat 53:33–39

    Article  PubMed  CAS  Google Scholar 

  20. Anbazhagan R, Bornman DM, Johnston JC, Westra WH, Gabrielson E (1999) The S387Y mutations of the transforming growth factor-beta receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res 59:3363–3364

    PubMed  CAS  Google Scholar 

  21. Reiss M, Barcellos-Hoff MH (1997) Transforming growth factor-beta in breast cancer: a working hypothesis. Breast Cancer Res Treat 45:81–95

    Article  PubMed  CAS  Google Scholar 

  22. Roberts A, Wakefield L (2003) The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA 100:8621–8623

    Article  PubMed  CAS  Google Scholar 

  23. Tang B, Vu M, Booker T, Santner SJ, Miller FR, Anver MR, Wakefield LM (2003) TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116–1124

    PubMed  CAS  Google Scholar 

  24. Ghellal A, Li C, Hayes M, Byrne G, Bundred N, Kumar S (2000) Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res 20:4413–4418

    PubMed  CAS  Google Scholar 

  25. Sheen-Chen SM, Chen HS, Sheen CW, Eng HL, Chen WJ (2001) Serum levels of transforming growth factor beta1 in patients with breast cancer. Arch Surg 136:937–940

    Article  PubMed  CAS  Google Scholar 

  26. Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952

    PubMed  CAS  Google Scholar 

  27. Walker RA, Dearing SJ, Gallacher B (1994) Relationship of transforming growth factor beta 1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br J Cancer 69:1160–1165

    PubMed  CAS  Google Scholar 

  28. Dumont N, Arteaga CL (2000) Transforming growth factor-beta and breast cancer: tumor promoting effects of transforming growth factor-beta. Breast Cancer Res 2:125–132

    Article  PubMed  CAS  Google Scholar 

  29. Ronnov-Jessen L, Petersen OW (1993) Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 68:696–707

    PubMed  CAS  Google Scholar 

  30. Sieuwerts A, Klijn J, Henzen-Logmans S, Foekens J (1999) Cytokine regulated urokinase type plasminogen activator (uPA) production by human breast fibroblasts in vitro. Breast Cancer Res Treat 55:9–20

    Article  PubMed  CAS  Google Scholar 

  31. Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH et al (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  PubMed  CAS  Google Scholar 

  32. Geiser AG, Burmester JK, Webbink R, Roberts AB, Sporn MB (1992) Inhibition of growth by transforming growth factor-beta following fusion of two nonresponsive human carcinoma cell lines. Implication of the type II receptor in growth inhibitory responses. J Biol Chem 267:2588–2593

    PubMed  CAS  Google Scholar 

  33. Stampfer MR, Yaswen P, Alhadeff M, Hosoda J (1993) TGF beta induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. J Cell Physiol 155:210–221

    Article  PubMed  CAS  Google Scholar 

  34. Delany AM, Canalis E (2001) The metastasis-associated metalloproteinase stromelysin-3 is induced by transforming growth factor-beta in osteoblasts and fibroblasts. Endocrinology 142:1561–1566

    Article  PubMed  CAS  Google Scholar 

  35. Pilkington MF, Sims SM, Dixon SJ (2001) Transforming growth factor-beta induces osteoclast ruffling and chemotaxis: potential role in osteoclast recruitment. J Bone Miner Res 16:1237–1247

    Article  PubMed  CAS  Google Scholar 

  36. Corsino P, Davis B, Law M, Chytil A, Forrester E, Norgaard P, Teoh N, Law B (2007) Tumors initiated by constitutive Cdk2 activation exhibit transforming growth factor {beta} resistance and acquire paracrine mitogenic stimulation during progression. Cancer Res 67:3135–3144

    Article  PubMed  CAS  Google Scholar 

  37. Plaut K, Bramley A, Casey T, Muss H (2004) Patients with recurrent breast cancer have higher expression of TGF-B1 in primary tumor. In: San Antonio breast cancer symposium, San Antonio, TX

  38. Singer C, Kronsteiner N, Marton E, Kubista M, Cullen K, Hirtenlehner K, Seifert M, Kubista E (2002) MMP-2 and MMP-9 expression in breast cancer-derived human fibroblasts is differentially regulated by stromal-epithelial interactions. Breast Cancer Res Treat 72:69–77

    Article  PubMed  CAS  Google Scholar 

  39. Basset P, Wolf C, Chambon P (1993) Expression of the stromelysin-3 gene in fibroblastic cells of invasive carcinomas of the breast and other human tissues: a review. Breast Cancer Res Treat 24:185–193

    Article  PubMed  CAS  Google Scholar 

  40. Tang Y, Kesavan P, Nakada MT, Yan L (2004) Tumor-stroma interaction: positive feedback regulation of extracellular matrix metalloproteinase inducer (EMMPRIN) expression and matrix metalloproteinase-dependent generation of soluble EMMPRIN. Mol Cancer Res 2:73–80

    PubMed  CAS  Google Scholar 

  41. Bhowmick NA, Chytil A, Plieth D, Gorska AE, Dumont N, Shappell S, Washington MK, Neilson EG, Moses HL (2004) TGF-{beta} Signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    Article  PubMed  CAS  Google Scholar 

  42. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996) Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76:69–125

    PubMed  CAS  Google Scholar 

  43. Cheng N, Bhowmick NA, Chytil A, Gorksa AE, Brown KA, Muraoka R, Arteaga CL, Neilson EG, Hayward SW, Moses HL (2005) Loss of TGF-beta type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-alpha-, MSP- and HGF-mediated signaling networks. Oncogene 24:5053–5068

    Article  PubMed  CAS  Google Scholar 

  44. Parrott JA, Nilsson E, Mosher R, Magrane G, Albertson D, Pinkel D, Gray JW, Skinner MK (2001) Stromal-epithelial interactions in the progression of ovarian cancer: influence and source of tumor stromal cells. Mol Cell Endocrinol 175:29–39

    Article  PubMed  CAS  Google Scholar 

  45. Elston CW, Ellis IO (2002) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. C. W. Elston & I. O. Ellis. Histopathology (1991) 19:403–410. Histopathology 41:151

    Google Scholar 

  46. Elston C, Ellis I (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathol 19:403–410

    Article  CAS  Google Scholar 

  47. Speirs V, White MC, Green AR (1996) Collagenase III: a superior enzyme for complete disaggregation and improved viability of normal and malignant human breast tissue. In vitro Cell Dev Biol Anim 32:72–74

    Article  PubMed  CAS  Google Scholar 

  48. Zarzynska J, Gajewska M, Motyl T (2005) Effects of hormones and growth factors on TGF-beta1 expression in bovine mammary epithelial cells. J Dairy Res 72:39–48

    Article  PubMed  CAS  Google Scholar 

  49. Van Susante J, Buma P, Van Beuningen H, Van den Berg W, Veth R (2000) Responsiveness of bovine chondrocytes to growth factors in medium with different serum concentrations. J Orthoped Res 18:68–77

    Article  Google Scholar 

  50. van Roozendaal C, Klijn J, van Ooijen B, Claassen C, Eggermont A, Henzen-Logmans S, Foekens J (1995) Transforming growth factor beta secretion from primary breast cancer fibroblasts. Mol Cell Endocrinol 111:1–6

    Article  PubMed  Google Scholar 

  51. Kratochwil K (1969) Organ specificity in mesenchymal induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev Biol 20:46–71

    Article  PubMed  CAS  Google Scholar 

  52. Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60:1254–1260

    PubMed  CAS  Google Scholar 

  53. Barcellos-Hoff MH (1993) Radiation-induced transforming growth factor beta and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res 53:3880–3886

    PubMed  CAS  Google Scholar 

  54. Barcellos-Hoff MH (1998) The potential influence of radiation-induced microenvironments in neoplastic progression. J Mammary Gland Biol Neoplasia 3:165–175

    Article  PubMed  CAS  Google Scholar 

  55. Moinfar F, Man YG, Arnould L, Bratthauer GL, Ratschek M, Tavassoli FA (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    PubMed  CAS  Google Scholar 

  56. Finak G, Sadekova S, Pepin F, Hallett M, Meterissian S, Halwani F, Khetani K, Souleimanova M, Zabolotny B, Omeroglu A, Park M (2006) Gene expression signatures of morphologically normal breast tissue identify basal-like tumors. Breast Cancer Res 8:R58

    Article  PubMed  CAS  Google Scholar 

  57. Bodey B, Bodey B Jr., Siegel SE, Kaiser HE (2001) Matrix metalloproteinases in neoplasm-induced extracellular matrix remodeling in breast carcinomas. Anticancer Res 21:2021–2028

    PubMed  CAS  Google Scholar 

  58. Sympson CJ, Bissell MJ, Werb Z (1995) Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1. Semin Cancer Biol 6:159–163

    Article  PubMed  CAS  Google Scholar 

  59. Thomasset N, Lochter A, Sympson CJ, Lund LR, Williams DR, Behrendtsen O, Werb Z, Bissell MJ (1998) Expression of autoactivated stromelysin-1 in mammary glands of transgenic mice leads to a reactive stroma during early development. Am J Pathol 153:457–467

    PubMed  CAS  Google Scholar 

  60. Clark EA, Goiub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  61. Nielsen B, Sehested M, Timshel S, Pyke C, Danø K (1996) Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 74:168–177

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from The Breast Cancer Research Foundation, New York, NY Real-time quantitative PCR was performed in the Vermont Cancer Center DNA Analysis Facility and was supported in part by grant P30CA22435 from the NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Casey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casey, T.M., Eneman, J., Crocker, A. et al. Cancer associated fibroblasts stimulated by transforming growth factor beta1 (TGF-β1) increase invasion rate of tumor cells: a population study. Breast Cancer Res Treat 110, 39–49 (2008). https://doi.org/10.1007/s10549-007-9684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9684-7

Keywords

Navigation