Skip to main content
Log in

Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Microorganisms colonize the surfaces of plant roots, leaves, and flowers known as the rhizosphere, phyllosphere, and anthosphere. These spheres differ largely in a number of factors that may determine the ability of microbes to establish themselves and to grow in these habitats. In this article, we focus on volatile organic compounds (VOCs) emitted by plants, and we discuss their effects on microbial colonizers, with an emphasis on bacteria. We present examples of how growth-inhibiting properties and mechanisms of VOCs such as terpenoids, benzenoid compounds, aliphatics, and sulfur containing compounds prevent bacterial colonization at different spheres, in antagonism with their role as carbon-sources that support the growth of different bacterial taxa. The notion that VOCs represent important factors that define bacterial niches is further supported by results for representatives of two bacterial genera that occupy strongly diverging niches based on scent emissions of different plant species and organs. Bacteria are known to either positively or negatively affect plant fitness and to interfere with plant-animal interactions. Thus, bacteria and other microbes may select for VOCs, enabling plants to control microbial colonizers on their surfaces, thereby promoting the growth of mutualists and preventing the establishment of detrimental microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot 57:4025–4032

    Article  PubMed  CAS  Google Scholar 

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Article  Google Scholar 

  • Ahmad A, Khan A, Akhtar F, Yousuf S, Xess I, Khan LA, Manzoor N (2011) Fungicidal activity of thymol and carvacrol by disrupting ergosterol biosynthesis and membrane integrity against Candida. Eur J Clin Microbiol Infect Dis 30:41–50

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Aligiannis N, Kalpoutzakis E, Kyriakopoulou I, Mitaku S, Chinou IB (2004) Essential oil of Phlomis species growing in Greece: chemical composition and antimicrobial activity. Flavour Fragr J 19:320–324

    Article  CAS  Google Scholar 

  • Ashour HM (2008) Antibacterial, antifungal, and anticancer activities of volatile oils and extracts from stems, leaves, and flowers of Eucalyptus sideroxylon and Eucalyptus torquata. Cancer Biol Ther 7:399–403

    Article  PubMed  Google Scholar 

  • Atkinson R, Arey J (2003) Atmospheric degradation of volatile organic compounds. Chem Rev 103:4605–4638

    Article  PubMed  CAS  Google Scholar 

  • Attaran E, Rostás M, Zeier J (2008) Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Mol Plant-Microbe Interact 21:1482–1497

    Article  PubMed  CAS  Google Scholar 

  • Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  PubMed  CAS  Google Scholar 

  • Banchio E, Xie XT, Zhang HM, Pare PW (2009) Soil bacteria elevate essential oil accumulation and emissions in sweet basil. J Agric Food Chem 57:653–657

    Article  PubMed  CAS  Google Scholar 

  • Basim E, Basim H, Ozcan M (2006) Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. J Food Eng 77:992–996

    Article  Google Scholar 

  • Beisner BE, Peres PR, Lindstrom ES, Barnett A, Longhi ML (2006) The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87:2985–2991

    Article  PubMed  Google Scholar 

  • Belisle M, Peay KG, Fukami T (2012) Flowers as islands: spatial distribution of nectar-inhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microb Ecol 63:711–718

    Article  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  PubMed  CAS  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329

    Article  PubMed  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  • Bressan M, Roncato MA, Bellvert F, Comte G, Haichar FE, Achouak W, Berge O (2009) Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J 3:1243–1257

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects - Finding the right mix. Phytochemistry 72:1605–1611

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Loren V, van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  PubMed  CAS  Google Scholar 

  • Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324

    Article  PubMed  CAS  Google Scholar 

  • Cecchini C, Coman MM, Cresci A, Tirillini B, Cristalli G, Papa F, Sagratini G, Vittori S, Maggi F (2010) Essential oil from fruits and roots of Ferulago campestris (Besser) Grecescu (Apiaceae): composition and antioxidant and anti-Candida activity. Flavour Fragr J 25:493–502

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, D’Auria JC, Farooq A, Pichersky E, Gershenzon J (2003) Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers. Plant Cell 15:481–494

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Ro D-K, Petri J, Gershenzon J, Bohlmann J, Pichersky E, Tholl D (2004) Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol 135:1956–1966

    Article  PubMed  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kirn YC (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Clark L, Mason JR (1985) Use of nest material as insecticidal and anti-pathogenic agents by the European Starling. Oecologia 67:169–176

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D (2007) Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J Agric Food Chem 55:6300–6308

    Article  PubMed  CAS  Google Scholar 

  • Croft KPC, Juttner F, Slusarenko AJ (1993) Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L) leaves inoculated with Pseudomonas syringae pv phaseolicola. Plant Physiol 101:13–24

    PubMed  CAS  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, and Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol, this volume

  • de Carvalho C, de Fonseca MMR (2007) Preventing biofilm formation: promoting cell separation with terpenes. FEMS Microbiol Ecol 61:406–413

    Article  PubMed  CAS  Google Scholar 

  • Del Giudice L, Massardo DR, Pontieri P, Bertea CM, Mombello D, Carata E, Tredici SM, Tala A, Mucciarelli M, Groudeva VI et al (2008) The microbial community of Vetiver root and its involvement into essential oil biogenesis. Environ Microbiol 10:2824–2841

    Article  PubMed  CAS  Google Scholar 

  • Desbrosses GJ, Stougaard J (2011) Root nodulation: A paradigm for how plant-microbe symbiosis influences host developmental pathways. Cell Host Microbe 10:348–358

    Article  PubMed  CAS  Google Scholar 

  • Di Pasqua R, Hoskins N, Betts G, Mauriello G (2006) Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem 54:2745–2749

    Article  PubMed  CAS  Google Scholar 

  • Di Pasqua R, Betts G, Hoskins N, Edwards M, Ercolini D, Mauriello G (2007) Membrane toxicity of antimicrobial compounds from essential oils. J Agric Food Chem 55:4863–4870

    Article  PubMed  CAS  Google Scholar 

  • Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10:1040–1049

    PubMed  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  PubMed  CAS  Google Scholar 

  • Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87

    Article  CAS  Google Scholar 

  • Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: Recent advances and future perspectives. Crit Rev Plant Sci 25:417–440

    Article  CAS  Google Scholar 

  • Effmert U, Kalderas J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  PubMed  CAS  Google Scholar 

  • Erb M, Glauser G, Robert CAM (2012) Induced immunity against belowground insect herbivores - Activation of defenses in the absence of a jasmonate burst. J Chem Ecol 38:629–640

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren C, Hagstrom A, Nilsson D, Zweifel UL (2010) Annual variations in the diversity, viability, and origin of airborne bacteria. Appl Environ Microbiol 76:3015–3025

    Article  PubMed  CAS  Google Scholar 

  • Fall R, Benson AA (1996) Leaf methanol - The simplest natural product from plants. Trends Plant Sci 1:296–301

    Google Scholar 

  • Farag MA, Ryu CM, Sumner LW, Pare PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Farag MA, Zhang H and Ryu C-M (2013) Dynamic chemical communication between plants and bacteria through airborne signals: Induced resistance by bacterial volatiles. J Chem Ecol, this volume

  • Field B, Osbourn AE (2008) Metabolic diversification-independent assembly of operon-like gene clusters in different plants. Science 320:543–547

    Article  PubMed  CAS  Google Scholar 

  • Fontana A, Reichelt M, Hempel S, Gershenzon J, Unsicker SB (2009) The effects of arbuscular mycorrhizal fungi on direct and indirect defense metabolites of Plantago lanceolata L. J Chem Ecol 35:833–843

    Article  PubMed  CAS  Google Scholar 

  • Fridman S, Izhaki I, Gerchman Y, Halpern M (2012) Bacterial communities in floral nectar. Environ Microbiol Rep 4:97–104

    Article  PubMed  Google Scholar 

  • Fuernkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G (2012) Microbial diversity inside pumpkins: microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol 63:418–428

    Article  CAS  Google Scholar 

  • Galbally IE, Kirstine W (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43:195–229

    Article  CAS  Google Scholar 

  • Gao Y, Jin YJ, Li HD, Chen HJ (2005) Volatile organic compounds and their roles in bacteriostasis in five conifer species. J Integr Plant Biol 47:499–507

    Article  CAS  Google Scholar 

  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA et al (1995) A global-model of natural volatile organic-compound emissions. J Geophys Res Atmos 100:8873–8892

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Karban R (2010) Explaining evolution of plant communication by airborne signals. Trends Ecol Evol 25:137–144

    Article  PubMed  Google Scholar 

  • Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci USA 104:5467–5472

    Article  PubMed  CAS  Google Scholar 

  • Herde M, Gärtner K, Köllner TG, Fode B, Boland W, Gershenzon J, Gatz C, Tholl D (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C16-homoterpene TMTT. Plant Cell 20:1152–1168

    Article  PubMed  CAS  Google Scholar 

  • Himanen SJ, Blande JD, Klemola T, Pulkkinen J, Heijari J, Holopainen JK (2010) Birch (Betula spp.) leaves adsorb and re-release volatiles specific to neighbouring plants - a mechanism for associational herbivore resistance? New Phytol 186:722–732

    Article  PubMed  CAS  Google Scholar 

  • Horvath G, Kovacs K, Kocsis B, Kustos I (2009) Effect of thyme (Thymus vulgaris L.) essential oil and its main constituents on the outer membrane protein composition of Erwinia strains studied with microfluid chip technology. Chromatographia 70:1645–1650

    Article  CAS  Google Scholar 

  • Hountondji FCC, Sabelis MW, Hanna R, Janssen A (2005) Herbivore-induced plant volatiles trigger sporulation in entomopathogenic fungi: The case of Neozygites tanajoae infecting the cassava green mite. J Chem Ecol 31:1003–1021

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Cardoza YJ, Schmelz EA, Raina R, Engelberth J, Tumlinson JH (2003) Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217:767–775

    Article  PubMed  CAS  Google Scholar 

  • Huang MS, Abel C, Sohrabi R, Petri J, Haupt I, Cosimano J, Gershenzon J, Tholl D (2010) Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03. Plant Physiol 153:1293–1310

    Article  PubMed  CAS  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Article  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS et al (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  CAS  Google Scholar 

  • Ibekwe AM, Grieve CM (2004) Changes in developing plant microbial community structure as affected by contaminated water. FEMS Microbiol Ecol 48:239–248

    Article  PubMed  CAS  Google Scholar 

  • Inoue Y, Hada T, Shiraishi A, Hirose K, Hamashima H, Kobayashi S (2005) Biphasic effects of geranylgeraniol, teprenone, and phytol on the growth of Staphylococcus aureus. Antimicrob Agents Chemother 49:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Jallow MFA, Dugassa-Gobena D, Vidal S (2008) Influence of an endophytic fungus on host plant selection by a polyphagous moth via volatile spectrum changes. Arthropod-Plant Interactions 2:53–62

    Article  Google Scholar 

  • Johnson SN, Nielsen UN (2012) Foraging in the dark - Chemically mediated host plant location by belowground insect herbivores. J Chem Ecol 38:604–614

    Article  PubMed  CAS  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  PubMed  CAS  Google Scholar 

  • Junker RR, Höcherl N, Blüthgen N (2010) Responses to olfactory signals reflect network structure of flower-visitor interactions. J Anim Ecol 79:818–823

    PubMed  Google Scholar 

  • Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918–924

    Article  PubMed  CAS  Google Scholar 

  • Junker RR, Blüthgen N, Brehm T, Binkenstein J, Paulus J, Schaefer HM, Stang M (2013) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol 27:329–341

    Article  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antibacterial and antifungal properties of essential oils. Curr Med Chem 10:813–829

    Article  PubMed  CAS  Google Scholar 

  • Karamanoli K, Vokou D, Menkissoglu U, Constantinidou HI (2000) Bacterial colonization of phyllosphere of mediterranean aromatic plants. J Chem Ecol 26:2035–2048

    Article  CAS  Google Scholar 

  • Karamanoli K, Menkissoglu-Spiroudi U, Bosabalidis AM, Vokou D, Constantinidou HIA (2005) Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15:59–67

    Article  Google Scholar 

  • Karamanoli K, Thalassinos G, Karpouzas D, Bosabalidis AM, Vokou D, Constantinidou HI (2012) Are leaf glandular trichomes of Oregano hospitable habitats for bacterial growth? J Chem Ecol 38:476–485

    Article  PubMed  CAS  Google Scholar 

  • Karapinar M, Aktug SE (1987) Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. Int J Food Microbiol 4:161–166

    Article  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854

    Article  PubMed  CAS  Google Scholar 

  • Kim YS, Park SJ, Lee EJ, Cerbo RM, Lee SM, Ryu CH, Kim GS, Kim JO, Ha YL (2008) Antibacterial compounds from Rose Bengal-sensitized photooxidation of beta-caryophyllene. J Food Sci 73:C540–C545

    Article  PubMed  CAS  Google Scholar 

  • Kleinheinz GT, Bagley ST, St John WP, Rughani JR, McGinnis GD (1999) Characterization of alpha-pinene-degrading microorganisms and application to a bench-scale biofiltration system for VOC degradation. Arch Environ Contam Toxicol 37:151–157

    Article  PubMed  CAS  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Kpoviessi DSS, Gbenou JD, Gbaguidi FA, Ahoussi L, Accrombessi GC, Moudachirou M, Quetin-Leclercq J (2009) Justicia anselliana (Nees) T. Anders essential oils compounds and allelopathic effects on cowpea Vigna unguiculata (L.) Walp plant. J Essent Oil Res 21:83–88

    Article  CAS  Google Scholar 

  • Kubo I, Muroi H, Himejima M (1992) Antimicrobial activity of green tea flavor components and their combination effects. J Agric Food Chem 40:245–248

    Article  CAS  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8

    PubMed  CAS  Google Scholar 

  • Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917

    Article  PubMed  CAS  Google Scholar 

  • Leitner M, Kaiser R, Hause B, Boland W, Mithofer A (2010) Does mycorrhization influence herbivore-induced volatile emission in Medicago truncatula? Mycorrhiza 20:89–101

    Article  PubMed  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  PubMed  CAS  Google Scholar 

  • Lindow SE, Arny DC, Upper CD (1978) Distribution of ice nucleation-active bacteria on plants in nature. Appl Environ Microbiol 36:831–838

    PubMed  CAS  Google Scholar 

  • Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9

    Article  PubMed  Google Scholar 

  • Lokvam J, Braddock JF (1999) Anti-bacterial function in the sexually dimorphic pollinator rewards of Clusia grandiflora (Clusiaceae). Oecologia 119:534–540

    Article  Google Scholar 

  • Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int J Food Microbiol 131:240–245

    Article  PubMed  CAS  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Lee HS, Hari K, Sundaram SP, Sa TM (2005) Pink-pigmented facultative methylotrophic bacteria accelerate germination, growth and yield of sugarcane clone Co86032 (Saccharum officinarum L.). Biol Fertil Soils 41:350–358

    Article  CAS  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Kwon SW, Sa TM (2009) Methylobacterium phyllosphaerae sp nov., a pink-pigmented, facultative methylotroph from the phyllosphere of rice. Int J Syst Evol Microbiol 59:22–27

    Article  PubMed  CAS  Google Scholar 

  • Matsui K (2006) Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr Opin Plant Biol 9:274–280

    Article  PubMed  CAS  Google Scholar 

  • Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L (2000) The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochim Biophys Acta-Biomembranes 1463:20–30

    Article  CAS  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE, Qi XQ, Townsend B, Qin B (2003) Dissecting plant secondary metabolism - constitutive chemical defences in cereals. New Phytol 159:101–108

    Article  CAS  Google Scholar 

  • Östman Ö, Drakare S, Kritzberg ES, Langenheder S, Logue JB, Lindström ES (2010) Regional invariance among microbial communities. Ecol Lett 13:118–127

    Article  PubMed  Google Scholar 

  • Owen SM, Clark S, Pompe M, Semple KT (2007) Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol Lett 268:34–39

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. Proc Natl Acad Sci USA 96:12923–12928

    Article  PubMed  CAS  Google Scholar 

  • Parveen M, Hasan MK, Takahashi J, Murata Y, Kitagawa E, Kodama O, Iwahashi H (2004) Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother 54:46–55

    Article  PubMed  CAS  Google Scholar 

  • Piesik D, Lemnczyk G, Skoczek A, Lamparski R, Bocianowski J, Kotwica K, Delaney KJ (2011) Fusarium infection in maize: Volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus. J Plant Physiol 168:1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Pineda A, Soler R, Weldegergis BT, Shimwela MM, Van Loon JJA, Dicke M (2013) Non-pathogenic rhizobacteria interfere with the attraction of parasitoids to aphid-induced plant volatiles via jasmonic acid signalling. Plant Cell Environ 36:393–404

    Article  PubMed  CAS  Google Scholar 

  • Radulovic NS, Blagojevic PD, Stojanovic-Radic ZZ, Stojanovic NM (2013) Antimicrobial plant metabolites: structural diversity and mechanism of action. Curr Med Chem 20:932–952

    PubMed  CAS  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: The ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Rapparini F, Llusia J, Penuelas J (2008) Effect of arbuscular mycorrhizal (AM) colonization on terpene emission and content of Artemisia annua L. Plant Biol 10:108–122

    Article  PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Ro DK, Ehlting J, Keeling CI, Lin R, Mattheus N, Bohlmann J (2006) Microarray expression profiling and functional characterization of AtTPS genes: Duplicated Arabidopsis thaliana sesquiterpene synthase genes At4g13280 and At4g13300 encode root-specific and wound-inducible (Z)-γ-bisabolene synthases. Arch Biochem Biophys 448:104–116

    Article  PubMed  CAS  Google Scholar 

  • Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, Costa J, Casanova J, Bolla JM, Berti L (2007) (E)-Methylisoeugenol and elemicin: antibacterial components of Daucus carota L. essential oil against Campylobacter jejuni. J Agric Food Chem 55:7332–7336

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Pare PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Seco R, Penuelas J, Filella I (2007) Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. MBio 4:e00602–e00612

    Article  PubMed  Google Scholar 

  • Simic N, Palic R, Randjelovic V (2005) Composition and antibacterial activity of Achillea clypeolata essential oil. Flavour Fragr J 20:127–130

    Article  CAS  Google Scholar 

  • Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: Patterns, processes, and mechanisms. J Chem Ecol 38:755–767

    Article  PubMed  CAS  Google Scholar 

  • Song YY, Ye M, Li CY, Wang RL, Wei XC, Luo SM and Zeng RS (2013) Priming of anti-herbivore defense in tomato by arbuscular mycorrhizal fungus and involvement of the jasmonate pathway. J Chem Ecol, this volume

  • Spor A, Koren O, Ley R (2011) Unravelling the effects of the environment and host genotype on the gut microbiome. Nat Rev Microbiol 9:279–290

    Article  PubMed  CAS  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71:7245–7252

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. The Arabidopsis book: 9:e0143

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  PubMed  CAS  Google Scholar 

  • Tholl D, Sohrabi R, Huh J-H, Lee S (2011) The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets. Phytochemistry 72:1635–1646

    Article  PubMed  CAS  Google Scholar 

  • Toome M, Randjarv P, Copolovici L, Niinemets U, Heinsoo K, Luik A, Noe SM (2010) Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232:235–243

    Article  PubMed  CAS  Google Scholar 

  • Tripathi NN, Mishra AK, Tripathi S (2011) Antibacterial potential of plant volatile oils: A review. Proc Nat Acad Sci India B-Biol Sci 81:23–68

    Google Scholar 

  • Turlings TCJ, Hiltpold I, Rasmann S (2012) The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358:47–56

    Article  CAS  Google Scholar 

  • Ultee A, Kets EPW, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610

    PubMed  CAS  Google Scholar 

  • Ultee A, Slump RA, Steging G, Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Prot 63:620–624

    PubMed  CAS  Google Scholar 

  • Unsicker SB, Kunert G, Gershenzon J (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12:479–485

    Article  PubMed  CAS  Google Scholar 

  • Utama IMS, Wills RBH, Ben-Yehoshua S, Kuek C (2002) In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J Agric Food Chem 50:6371–6377

    Article  PubMed  CAS  Google Scholar 

  • Vaughan MM, Wang Q, Webster FX, Kiemle D, Hong YJ, Tantillo DJ, Coates RM, Wray AT, Askew W, O’Donnell C et al (2013) Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory. Plant Cell 25:1108–1125

    Article  PubMed  CAS  Google Scholar 

  • Velickovic DT, Randjelovic NV, Ristic MS, Velickovic AS, Smelcerovic AA (2003) Chemical constituents and antimicrobial activity of the ethanol extracts obtained from the flower, leaf and stem of Salvia officinalis L. J Serbian Chem Soc 68:17–24

    Article  CAS  Google Scholar 

  • Vilela GR, de Almeida GS, D’Arce M, Moraes MHD, Brito JO, da Silva M, Silva SC, Piedade SMD, Calori-Domingues MA, da Gloria EM (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Prod Res 45:108–111

    Article  CAS  Google Scholar 

  • Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the mediterranean phyllosphere and its relationship with airborne bacteria. Microb Ecol 64:714–724

    Article  PubMed  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  PubMed  CAS  Google Scholar 

  • Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG (2003) Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J Appl Microbiol 94:240–247

    Article  PubMed  CAS  Google Scholar 

  • Wardhaugh CW, Stork NE, Edwards W, Grimbacher PS (2012) The overlooked biodiversity of flower-visiting invertebrates. PLoS One 7:e45796

    Article  PubMed  CAS  Google Scholar 

  • Wellner S, Lodders N, Kampfer P (2011) Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. Syst Appl Microbiol 34:621–630

    Article  PubMed  CAS  Google Scholar 

  • Wenda-Piesik A, Piesik D, Ligor T, Buszewski B (2010) Volatile organic compounds (VOCs) from cereal plants infested with crown rot: their identity and their capacity for inducing production of VOCs in uninfested plants. Int J Pest Manage 56:377–383

    Article  CAS  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  PubMed  CAS  Google Scholar 

  • Wenke K, Wanke D, Kilian J, Berendzen K, Harter K, Piechulla B (2012) Volatiles of two growth-inhibiting rhizobacteria commonly engage AtWRKY18 function. Plant J 70:445–459

    Article  PubMed  CAS  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  PubMed  CAS  Google Scholar 

  • Wiggins P (2004) Effiux pumps: an answer to Gram-negative bacterial resistance? Expert Opin Investg Drugs 13:899–902

    Article  CAS  Google Scholar 

  • Wilson M, Lindow SE (1994) Coexistence among epiphytic bacterial populations mediated through nutritional resource partitioning. Appl Environ Microbiol 60:4468–4477

    PubMed  CAS  Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  • Yadav RKP, Karamanoli K, Vokou D (2005) Bacterial colonization of the phyllosphere of Mediterranean perennial species as influenced by leaf structural and chemical features. Microb Ecol 50:185–196

    Article  PubMed  CAS  Google Scholar 

  • Yadav RKP, Papatheodorou EM, Karamanoli K, Constantinidou HIA, Vokou D (2008) Abundance and diversity of the phyllosphere bacterial communities of Mediterranean perennial plants that differ in leaf chemistry. Chemoecology 18:217–226

    Article  CAS  Google Scholar 

  • Yeo YS, Nybo SE, Chittiboyina AG, Weerasooriya AD, Wang YH, Gongora-Castillo E, Vaillancourt B, Buell CR, DellaPenna D, Celiz MD et al (2013) Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in Valeriana officinalis. J Biol Chem 288:3163–3173

    Article  PubMed  CAS  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Maren Höfers for help with Fig. 1 and Afroditi Kantsa for valuable comments on the manuscript. Research by R.R.J. on bacterial communities on petals and leaves was funded by the Deutsche Forschungsgemeinschaft (BL960/1-1). Work by D.T. was supported by a National Science Foundation Advance Virginia Tech research and development grant, National Science Foundation Grant MCB-0950865, Thomas and Kate Jeffress Memorial Trust Grant J-850, and a US Department of Agriculture Cooperative State Research, Education, and Extension Service National Research Initiative Grant 2007-35318-18384 (to D.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Tholl.

Additional information

Robert R. Junker and Dorothea Tholl contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Junker, R.R., Tholl, D. Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. J Chem Ecol 39, 810–825 (2013). https://doi.org/10.1007/s10886-013-0325-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0325-9

Keywords

Navigation