Skip to main content
Log in

Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Roots respond dynamically to belowground herbivore attack. Yet, little is known about the mechanisms and ecological consequences of these responses. Do roots behave the same way as leaves, or do the paradigms derived from aboveground research need to be rewritten? This is the central question that we tackle in this article. To this end, we review the current literature on induced root defenses and present a number of experiments on the interaction between the root herbivore Diabrotica virgifera and its natural host, maize. Currently, the literature provides no clear evidence that plants can recognize root herbivores specifically. In maize, mild mechanical damage is sufficient to trigger a root volatile response comparable to D. virgifera induction. Interestingly, the jasmonate (JA) burst, a highly conserved signaling event following leaf attack, is consistently attenuated in the roots across plant species, from wild tobacco to Arabidopsis. In accordance, we found only a weak JA response in D. virgifera attacked maize roots. Despite this reduction in JA-signaling, roots of many plants start producing a distinct suite of secondary metabolites upon attack and reconfigure their primary metabolism. We, therefore, postulate the existence of additional, unknown signals that govern induced root responses in the absence of a jasmonate burst. Surprisingly, despite the high phenotypic plasticity of plant roots, evidence for herbivore-induced resistance below ground is virtually absent from the literature. We propose that other defensive mechanisms, including resource reallocation and compensatory growth, may be more important to improve plant immunity below ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, A. A. 1998. Induced responses to herbivory and increased plant performance. Science 279(5354):1201–1202.

    PubMed  CAS  Google Scholar 

  • Alborn, T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276(5314):945–949.

    CAS  Google Scholar 

  • Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2010. Subterranean herbivore-induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. J. Chem. Ecol. 36(4):361–368.

    PubMed  CAS  Google Scholar 

  • Ali, J. G., Alborn, H. T., and Stelinski, L. L. 2011. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J. Ecol. 99(1):26–35.

    CAS  Google Scholar 

  • Aloni, R., Aloni, R., Langhans, M., and Ullrich, C. L. 2006. Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann. Botany 97(5):883–893.

    CAS  Google Scholar 

  • Baldwin, I. T. 1989. Mechanism of damage-induced alkaloid production in wild tobacco. J. Chem. Ecol. 15(5):1661–1680.

    CAS  Google Scholar 

  • Baldwin, I. T. 1998. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc. Natl. Acad. Sci. USA 95(14):8113–8118.

    PubMed  CAS  Google Scholar 

  • Benjamins, R., and Scheres, B. 2008. Auxin: The looping star in plant development. Annu. Rev. Plant Biol. 59:443–465.

    Google Scholar 

  • Berenbaum, M. R. and Zangerl, A. R. 2008. Facing the future of plant-insect interaction research: Le Retour a la "Raison d'Etre''. Plant Physiol. 146(3):804–811.

    PubMed  CAS  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., van Dam, N. M., van der Putten, W. H., and Wäckers, F. L. 2004. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury. J. Chem. Ecol. 30(1):53–67.

    PubMed  CAS  Google Scholar 

  • Bezemer, T. M., Wagenaar, R., van Dam, N. M., and Wäckers, F. L. 2003. Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101(3):555–562.

    Google Scholar 

  • Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T. M., Mueller, M. J., Xia, Z. Q., and Zenk, M. H. 1995. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92(10):4099–105.

    PubMed  CAS  Google Scholar 

  • Blossey, B. and Hunt-Joshi, T. R. 2003. Belowground herbivory by insects: Influence on plants and aboveground herbivores. Annu. Rev. Entomol. 48:521–547.

    PubMed  CAS  Google Scholar 

  • Bodenhausen, N. and Reymond, P. 2007. Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis. Mol. Plant-Microb. Interact. 20(11):1406–1420.

    CAS  Google Scholar 

  • Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60(1):379–406.

    PubMed  CAS  Google Scholar 

  • Bonaventure, G., van Doorn, A., Baldwin, I. T. (2011). Herbivore associated elicitors: FAC signaling and metabolism. Trends in Plant Science, 16, 294-299. doi:10.1016/j.tplants.2011.01.006.

  • Care, D. A., Crush, J. R., Hardwick, S., Nichols, S. N., and Ouyang, L. 2000. Interaction between clover root weevil and clover root type. New Zeal. Plant Protect. 53:420–424.

    Google Scholar 

  • Clark, K. E., Hartley, S. E., and Johnson, S. N. 2011a. Does mother know best? The preference-performance hypothesis and parent-offspring conflict in aboveground-belowground herbivore life cycles. Ecolog. Entomol. 36(2):117–124.

    Google Scholar 

  • Clark, R. T., Maccurdy, R. B., Jung, J. K., Shaff, J. E., McCouch, S. R., Aneshansley, D. J., and Kochian, L. V. 2011b. Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol. 156(2):455–465.

    PubMed  CAS  Google Scholar 

  • Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. 2010. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 61(1):651–679.

    PubMed  CAS  Google Scholar 

  • Dogimont, C., Bendahmane, A., Chovelon, V., and Boissot, N. 2010. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus Biologies 333(6–7):566–573.

    PubMed  CAS  Google Scholar 

  • Erb, M. 2009. Modification of plant resistance and metabolism by above- and belowground herbivores. Neuchâtel: University of Neuchâtel, p. 131.

  • Erb, M., Balmer, D., de Lange, E. S., von Merey, G., Planchamp, C., Robert, C., Röder, G., Sobhy, I., Zwahlen, C., Mauch-Mani, B., et al. 2011a. Synergies and trade-offs between insect and pathogen resistance in maize leaves and roots. Plant, Cell Environ. 34(7):1088–1103.

    CAS  Google Scholar 

  • Erb, M., Flors, V., Karlen, D., de Lange, E., Planchamp, C., D'Alessandro, M., Turlings, T. C. J., and Ton, J. 2009a. Signal signature of aboveground-induced resistance upon belowground herbivory in maize. Plant J. 59(2):292–302.

    PubMed  CAS  Google Scholar 

  • Erb, M., Foresti, N., and Turlings, T. C. J. 2010. A tritrophic signal that attracts parasitoids to host-damaged plants withstands disruption by non-host herbivores. BMC Plant Biol. 10(1):247.

    PubMed  Google Scholar 

  • Erb, M. and Glauser, G. 2010. Family business: multiple members of major phytohormone classes orchestrate plant stress responses. Chem Eur J 16(34):10280–10289.

    PubMed  CAS  Google Scholar 

  • Erb, M., Gordon-Weeks, R., Camañes, G., Turlings, T. C. J., and Ton, J. 2009b. Belowground ABA boosts aboveground production of DIMBOA and primes induction of chlorogenic acid in maize. Plant Signaling and Behavior 4(7):639–642.

    Google Scholar 

  • Erb, M., Köllner, T. G., Degenhardt, J., Zwahlen, C., Hibbard, B. E., and Turlings, T. C. J. 2011b. The role of abscisic acid and water stress in root herbivore-induced leaf resistance. New Phytol. 189(1):308–320.

    PubMed  CAS  Google Scholar 

  • Erb, M., Lenk, C., Degenhardt, J., and Turlings, T. C. J. 2009c. The underestimated role of roots in defense against leaf attackers. Trends Plant Sci. 14(12):653–659.

    PubMed  CAS  Google Scholar 

  • Erb, M., Meldau, S., and Howe, G. A. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. doi:10.1016/j.tplants.2012.01.003.

  • Erb, M., Robert, C., Hibbard, B. E., and Turlings, T. C. J. 2011c. Sequence of arrival determines plant-mediated interactions between herbivores. J. Ecol. 99(1):7–15.

    Google Scholar 

  • Felton, G. W. and Tumlinson, J. H. 2008. Plant-insect dialogs: complex interactions at the plant-insect interface. Curr. Opin. Plant Biol. 11(4):457–463.

    PubMed  CAS  Google Scholar 

  • Ferry, A., Dugravot, S., Delattre, T., Christides, J.-P., Auger, J., Bagnères, A.-G., Poinsot, D., and Cortesero, A.-M. 2007. Identification of a widespread monomolecular odor differentially attractive to several Delia radicum ground-dwelling predators in the field. J. Chem. Ecol. 33(11):2064–2077.

    PubMed  CAS  Google Scholar 

  • Gao, L. L., Klingler, J. P., and erson, J. P., Edwards, O. R., and Singh, K. B. 2008. Characterization of pea aphid resistance in Medicago truncatula. Plant Physiol. 146:996–1009.

    PubMed  CAS  Google Scholar 

  • Glauser, G., Marti, G., Villard, N., Doyen, G. A., Wolfender, J.-L., Turlings, T. C. J., and Erb, M. 2011. Induction and detoxification of maize 1,4-benzoxazin-3-ones by insect herbivores. Plant J. 68(5):901-911.

    Google Scholar 

  • Godfrey, L. D., Meinke, L. J., and Wright, R. J. 1993. Effects of larval injury by western com rootworm (Coleoptera: Chrysomelidae) on gas exchange parameters of field corn. J. Econom. Entomol. 86(5):1546–1556.

    Google Scholar 

  • Hare, J. D. 2011. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 56:161–180.

    PubMed  CAS  Google Scholar 

  • Hasegawa, S., Sogabe, Y., Asano, T., Nakagawa, T., Nakamura, H., Kodama, H., Ohta, H., Yamaguchi, K., Mueller, M. J., and Nishiuchi, T. 2011. Gene expression analysis of wounding-induced root-to-shoot communication in Arabidopsis thaliana. Plant, Cell Environ. 34(5):705–716.

    CAS  Google Scholar 

  • Hausmann, S. M. and Miller, J. R. 1989. Ovipositional preference and larval survival of the onion maggot (Diptera, Anthomyiidae) as influenced by previous maggot feeding. J. Econom. Entomol. 82(2):426–429.

    Google Scholar 

  • Heil, M. 2008. Indirect defence via tritrophic interactions. New Phytologist 178(1):41–61.

    PubMed  CAS  Google Scholar 

  • Heil, M. 2009. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 14(7):356–363.

    PubMed  CAS  Google Scholar 

  • Henkes, G. J., Thorpe, M. R., Minchin, P. E. H., Schurr, U., and Röse, U. S. R. 2008. Jasmonic acid treatment to part of the root system is consistent with simulated leaf herbivory, diverting recently assimilated carbon towards untreated roots within an hour. Plant, Cell Environ. 31(9):1229–1236.

    CAS  Google Scholar 

  • Hiltpold, I., Erb, M., Robert, C. A. M., and Turlings, T. C. J. 2011. Systemic root signaling in a belowground, volatile-mediated tritrophic interaction. Plant, Cell Environ. 34(8):1267–1275.

    CAS  Google Scholar 

  • Hiltpold, I., and Turlings, T. C. J. Manipulation of chemically mediated interactions in agricultural soils to enhance the control of crop pests. J. Chem. Ecol. 38(6): ------ this issue

  • Hofmann, N. R. 2009. Early signaling events in mechanosensing. Plant Cell Online 21(8):2191.

    CAS  Google Scholar 

  • Howe, G. A., and Browse, J. 2001. Jasmonate Synthesis and Action in Higher Plants. eLS: John Wiley & Sons, Ltd.

  • Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

    PubMed  CAS  Google Scholar 

  • Huffaker, A., Dafoe, N. J., and Schmelz, E. A. 2011. ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiol. 155(3):1325–1338.

    PubMed  CAS  Google Scholar 

  • Hunter, M. D. 2001. Out of sight, out of mind: the impacts of root-feeding insects in natural and managed systems. Agric. Forest Entomol. 3(1):3–9.

    Google Scholar 

  • Itoh, R. and Fujiwara, M. T. 2010. Regulation of leucoplast morphology in roots: Interorganellar signaling from mitochondria? Plant Signal. Behav. 5(7):856–859.

    Google Scholar 

  • Johnson, S. N., Hallett, P. D., Gillespie, T. L., and Halpin, C. 2010. Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol. Entomol. 35(2):186–191.

    CAS  Google Scholar 

  • Kaplan, I., Halitschke, R., Kessler, A., Rehill, B. J., Sardanelli, S., and Denno, R. F. 2008a. Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivory. Ecol. Lett. 11(8):841–851.

    PubMed  Google Scholar 

  • Kaplan, I., Halitschke, R., Kessler, A., Sardanelli, S., and Denno, R. F. 2008b. Constitutive and induced defenses to herbivory in above- and belowground plant tissues. Ecology 89(2):392–406.

    PubMed  Google Scholar 

  • Karban, R. and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. System. 20(1):331–348.

    Google Scholar 

  • Kobayashi, A., Takahashi, A., Kakimoto, Y., Miyazawa, Y., Fujii, N., Higashitani, A., and Takahashi, H. 2007. A gene essential for hydrotropism in roots. Proc. Natl. Acad. Sci. USA 104(11):4724–4729.

    PubMed  CAS  Google Scholar 

  • Koo, A. J. K. and Howe, G. A. 2009. The wound hormone jasmonate. Phytochemistry 70(13–14):1571–1580.

    PubMed  CAS  Google Scholar 

  • Kost, C. and Heil, M. 2008. The Defensive Role of Volatile Emission and Extrafloral Nectar Secretion for Lima Bean in Nature. J. Chem. Ecol. 34(1):2–13.

    CAS  Google Scholar 

  • Kurtz, B., Karlovsky, P., and Vidal, S. 2010. Interaction between western corn rootworm (Coleoptera: Chrysomelidae) larvae and root-infecting Fusarium verticillioides. Environ. Entomol. 39(5):1532–1538.

    PubMed  CAS  Google Scholar 

  • Lalonde, S., Wipf, D., and Frommer, W. B. 2004. Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annu. Rev. Plant Biol. 55(1):341–372.

    PubMed  CAS  Google Scholar 

  • Li, C., Liu, G., Xu, C., Lee, G. I., Bauer, P., Ling, H. Q., Ganal, M. W., and Howe, G. A. 2003. The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15(7):1646–61.

    PubMed  CAS  Google Scholar 

  • Lopez, L., Camas, A., Shivaji, R., Ankala, A., Williams, P., and Luthe, D. 2007. Mir1-CP, a novel defense cysteine protease accumulates in maize vascular tissues in response to herbivory. Planta 226(2):517–527.

    PubMed  CAS  Google Scholar 

  • Mathesius, U., and Noorden, G. E. 2011. Genomics of Root–Microbe Interactions Root Genomics, in Costa de Oliveira A, Varshney RK, (eds.): Springer Berlin Heidelberg. p 73–97.

  • Mayer, R. T., Shapiro, J. P., Berdis, E., Hearn, C. J., McCollum, T. G., McDonald, R. E., and Doostdar, H. 1995. Citrus Rootstock Responses to Herbivory By Larvae of the Sugarcane Rootstock Borer Weevil (Diaprepes-Abbreviatus). Physiologia Plantarum 94(1):164–173.

    CAS  Google Scholar 

  • McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., and Browse, J. 1997. Jasmonate is essential for insect defense Arabidopsis. Proc. Natl. Acad. Sci. USA 94(10):5473–5477.

    PubMed  CAS  Google Scholar 

  • Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P., and Williamson, V. M. 1998. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell Online 10(8):1307–1320.

    CAS  Google Scholar 

  • Murray, P. J., Dawson, L. A., and Grayston, S. J. 2002. Influence of root herbivory on growth response and carbon assimilation by white clover plants. Appl. Soil Ecol. 20(2):97–105.

    Google Scholar 

  • Musser, R. O., Hum-Musser, S. M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J. B., and Felton, G. W. 2002. Herbivory: Caterpillar saliva beats plant defences - A new weapon emerges in the evolutionary arms race between plants and herbivores. Nature 416(6881):599–600.

    PubMed  CAS  Google Scholar 

  • Newingham, B. A., Callaway, R. M., and Bassirirad, H. 2007. Allocating nitrogen away from a herbivore: a novel compensatory response to root herbivory. Oecologia 153(4):913–920.

    PubMed  Google Scholar 

  • Nuessly, G. S., Scully, B. T., Hentz, M. G., Beiriger, R., Snook, M. E., and Widstrom, N. W. 2007. Resistance to Spodoptera frugiperda (Lepidoptera: noctuidae) and Euxesta stigmatias (Diptera: ulidiidae) in sweet corn derived from exogenous and endogenous genetic systems. J. Econ. Entomol. 100(6):1887–1895.

    PubMed  CAS  Google Scholar 

  • Nunez-Farfan, J., Fornoni, J., and Valverde, P. L. 2007. The evolution of resistance and tolerance to herbivores. Annu. Rev. Ecol. Evol. System. 38:541–566.

    Google Scholar 

  • Omer, A. D., Thaler, J. S., Granett, J., and Karban, R. 2000. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93(3):840–5.

    PubMed  CAS  Google Scholar 

  • Onkokesung, N., Galis, I., von Dahl, C. C., Matsuoka, K., Saluz, H. P., and Baldwin, I. T. 2010. Jasmonic acid and ethylene modulate local responses to wounding and simulated herbivory in Nicotiana attenuata leaves. Plant Physiol. 153(2):785–798.

    PubMed  CAS  Google Scholar 

  • Orians, C., Thorn, A., and Gómez, S. 2011. Herbivore-induced resource sequestration in plants: why bother? Oecologia 167(1):1–9.

    PubMed  Google Scholar 

  • Pierre, P. S., Dugravot, S., Cortesero, A.-M., Poinsot, D., Raaijmakers, C. E., Hassan, H. M., and van Dam, N. M. 2012. Broccoli and turnip plants display contrasting responses to belowground induction by Delia radicum infestation and phytohormone applications. Phytochemistry 73:42–50.

    PubMed  CAS  Google Scholar 

  • Poveda, K., Jiménez, M. I. G., and Kessler, A. 2010. The enemy as ally: herbivore-induced increase in crop yield. Ecol. Appl. 20(7):1787–1793.

    PubMed  Google Scholar 

  • Prischmann DA, Dashiell K. E., Schneider, D. J., and Hibbard, B. E. 2007. Field screening maize germplasm for resistance and tolerance to western corn rootworms (Col.: Chrysomelidae). J. Appl. Entomol. 131(6):406–415.

    Google Scholar 

  • Puthoff, D. P. and Smigocki, A. C. 2006. Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. Plant Cell Rep. 26(1):71–84.

    PubMed  Google Scholar 

  • Puthoff, D. P. and Smigocki, A. C. 2007. Insect feeding-induced differential expression of Beta vulgaris root genes and their regulation by defense-associated signals. Plant Cell Reports 26(1):71–84.

    PubMed  CAS  Google Scholar 

  • Quinn, M. A. and Hall, M. H. 1992. Compensatory response of a legume root-nodule system to nodule herbivory by Sitona hispidulus. Entomol. Exp. Appl. 64(2):167–176.

    Google Scholar 

  • Rasmann, S. and Agrawal, A. A. 2008. In defense of roots: A research agenda for studying plant resistance to belowground herbivory. Plant Physiol. 146(3):875–880.

    PubMed  CAS  Google Scholar 

  • Rasmann S, Ali, J., Helder, J., and Van Der Putten, W. H. Ecology and evolution of soil nematode chemotaxis. J. Chem. Ecol. 38(6): ------ this issue

  • Rasmann, S., Agrawal, A. A., and Cook S. C., Erwinac 2009. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.). Ecology 90(9):2393–2404.

    PubMed  Google Scholar 

  • Rasmann, S., Erwin, A. C., Halitschke, R., and Agrawal, A. A. 2011. Direct and indirect root defences of milkweed (Asclepias syriaca): trophic cascades, trade-offs and novel methods for studying subterranean herbivory. J. Ecol. 99(1):16–25.

    CAS  Google Scholar 

  • Rasmann, S., Köllner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434(7034):732–737.

    PubMed  CAS  Google Scholar 

  • Rasmann, S. and Turlings, T. C. J. 2008. First insights into specificity of belowground tritrophic interactions. Oikos 117(3):362–369.

    Google Scholar 

  • Raven, J. A. and Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. J. Exp. Bot. 52(suppl 1):381–401.

    PubMed  CAS  Google Scholar 

  • Robert, C. A. M., Erb, M., Duployer, M., Zwahlen, C., Doyen, G. R., and Turlings, T. C. J. In press. Herbivore-induced plant volatiles mediate host selection by a root herbivore. New Phytologist doi:10.1111/j.1469-8137.2012.04127.x.

  • Robert, C. A. M., Veyrat, N., Glauser, G., Marti, G., Doyen, G. R., Villard, N., Gaillard, M. D. P., Köllner, T. G., Giron, D., Body, M., et al. 2012. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues. Ecol. Lett. 15(1):55–64.

    PubMed  Google Scholar 

  • Rubio, G. and Lynch, J. 2007. Compensation among root classes in Phaseolus vulgaris L. Plant and Soil 290(1):307–321.

    CAS  Google Scholar 

  • Ryan, C. A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta. 1477(1–2):112–21.

    PubMed  CAS  Google Scholar 

  • Schachtman, D. P. and Shin, R. 2007. Nutrient sensing and signaling: NPKS. Annu. Rev. Plant Biol. 58(1):47–69.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Alborn, H. T., Banchio, E., and Tumlinson, J. H. 2003. Quantitative relationships between induced jasmonic acid levels and volatile emission in Zea mays during Spodoptera exigua herbivory. Planta 216(4):665–673.

    PubMed  CAS  Google Scholar 

  • Schmelz, E. A., Grebenok, R. J., Galbraith, D. W., and Bowers, W. S. 1998. Damage-induced accumulation of phytoecdysteroids in spinach: A rapid root response involving the octadecanoic acid pathway. J. Chem. Ecol. 24(2):339–360.

    CAS  Google Scholar 

  • Schmelz, E. A., Leclere, S., Carroll, M. J., Alborn, H. T., and Teal, P. E. 2007. Cowpea (Vigna unguiculata) chloroplastic ATP synthase is the source of multiple plant defense elicitors during insect herbivory. Plant Physiol. 144:793–805.

    PubMed  CAS  Google Scholar 

  • Schwachtje, J. and Baldwin, I. T. 2008. Why does herbivore attack reconfigure primary metabolism? Plant Physiol. 146(3):845–851.

    PubMed  CAS  Google Scholar 

  • Schwachtje, J., Minchin, P. E., Jahnke, S., van Dongen, J. T., Schittko, U., and Baldwin, I. T. 2006. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103(34):12935–40.

    PubMed  CAS  Google Scholar 

  • Soler, R., Bezemer, T. M., Cortesero, A. M., van der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2007. Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia 152(2):257–264.

    PubMed  Google Scholar 

  • Soler, R., Bezemer, T. M., van der Putten, W. H., Vet, L. E. M., and Harvey, J. A. 2005. Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J. Animal Ecol. 74(6):1121–1130.

    Google Scholar 

  • Strauss, S. and Agrawal, A. 1999. The ecology and evolution of tolerance to herbivory. Trends Ecol. Evol. 14:179–185.

    PubMed  Google Scholar 

  • Torrence, A. G., German, S., Williams, P., and Luthe, D. S. 2011. Belowground resistance to western corn rootworm in lepidopteran-resistant maize genotypes. J. Econ. Entomol. 104:299–307.

    Google Scholar 

  • Traw, M. B. and Dawson, T. E. 2002. Differential induction of trichomes by three herbivores of black mustard. Oecologia 131(4):526–532.

    Google Scholar 

  • Tretner, C., Huth, U., and Hause, B. 2008. Mechanostimulation of Medicago truncatula leads to enhanced levels of jasmonic acid. J. Exp. Botany 59(10):2847–2856.

    CAS  Google Scholar 

  • Valkama, E., Koricheva, J., Salminen, J.-P., Helander, M., Saloniemi, I., Saikkonen, K., and Pihlaja, K. 2005. Leaf surface traits: overlooked determinants of birch resistance to herbivores and foliar micro-fungi? Trees Struct Funct 19(2):191–197.

    Google Scholar 

  • van Dam, N. M. 2009. Belowground herbivory and plant defenses. Annu. Rev. Ecol. Evol. Systemat. 40:373–391.

    Google Scholar 

  • van Dam, N. M., Hadwich, K., and Baldwin, I. T. 2000. Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122(3):371–379.

    Google Scholar 

  • van Dam, N. M. and Raaijmakers, C. E. 2006. Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16(1):17–24.

    Google Scholar 

  • van Dam, N. M., Tytgat, T. O. G., and Kirkegaard, J. A. 2009. Root and shoot glucosinolates: a comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem. Rev. 8(1):171–186.

    CAS  Google Scholar 

  • van Dam, N. M. and Vrieling, K. 1994. Genetic variation in constitutive and inducible pyrrolizidine alkaloid levels in Cynoglossum officinale L. Oecologia 99(3–4):374–378.

    Google Scholar 

  • Waisel, Y., Eshel, A., and Kafkafi, U. 2002. Plant Roots: The Hidden Half. Marcel Dekker, Inc, New York.

    Google Scholar 

  • Wu, J. Q. and Baldwin, I. T. 2009. Herbivory-induced signalling in plants: perception and action. Plant Cell Environ. 32(9):1161–1174.

    PubMed  CAS  Google Scholar 

  • Zangerl, A. R. and Rutledge, C. E. 1996. The probability of attack and patterns of constitutive and induced defense: A test of optimal defense theory. Am. Nat. 147(4):599–608.

    Google Scholar 

  • Zhu-Salzman, K., Luthe, D. S., and Felton, G. W. 2008. Arthropod-inducible proteins: Broad spectrum defenses against multiple herbivores. Plant Physiol. 146(3):852–858.

    PubMed  CAS  Google Scholar 

  • Ziegler, J. and Facchini, P. J. 2008. Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol. 59:735–769.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Chad Nielson and Wade French (USDA-ARS-NACRL Brookings, USA) for providing D. virgifera eggs. Ted Turlings provided access to GC-MS equipment. Guillaume Marti, Nicole van Dam, and Sergio Rasmann supplied additional information on induced secondary metabolites. This work is supported by a Swiss National Science Foundation Fellowship to M.E. (PBNEP3-134930). Comments by Ricardo Ruiz, Meret Huber, and two anonymous reviewers helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Erb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, M., Glauser, G. & Robert, C.A.M. Induced Immunity Against Belowground Insect Herbivores- Activation of Defenses in the Absence of a Jasmonate Burst. J Chem Ecol 38, 629–640 (2012). https://doi.org/10.1007/s10886-012-0107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0107-9

Keywords

Navigation