Skip to main content
Log in

The Bark Beetle Holobiont: Why Microbes Matter

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

All higher organisms are involved in symbioses with microbes. The importance of these partnerships has led to the concept of the holobiont, defined as the animal or plant with all its associated microbes. Indeed, the interactions between insects and symbionts form much of the basis for the success and diversity of this group of arthropods. Insects rely on microbes to perform basic life functions and to exploit resources and habitats. By “partnering” with microbes, insects access new genomic variation instantaneously allowing the exploitation of new adaptive zones, influencing not only outcomes in ecological time, but the degree of innovation and change that occurs over evolutionary time. In this review, I present a brief overview of the importance of insect-microbe holobionts to illustrate how critical an understanding of the holobiont is to understanding the insect host and it interactions with its environment. I then review what is known about the most influential insect holobionts in many forest ecosystems—bark beetles and their microbes—and how new approaches and technologies are allowing us to illuminate how these symbioses function. Finally, I discuss why it will be critical to study bark beetles as a holobiont to understand the ramifications and extent of anthropogenic change in forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams AS, Six DL (2008) Detection of host habitat by parasitoids using cues associated with mycangial fungi of the mountain pine beetle, Dendroctonus ponderosae. Can Entomol 140:124–127

    Article  Google Scholar 

  • Adams AS, Six DL, Adams S, Holben W (2008) In vitro interactions among yeasts, bacteria and the fungal symbionts of the mountain pine beetle, Dendroctonus ponderosae. Microb Ecol 56:460–466

    Article  PubMed  Google Scholar 

  • Adams AS, Currie CR, Cardoza Y, Klepzig K, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147

    Article  CAS  Google Scholar 

  • Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF (2010) Geographic variation in bacteria commonly associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ Entomol 39:406–414

    Article  PubMed  Google Scholar 

  • Adams AS, Boone CK, Buhlmann J, Raffa KF (2011) Response of bark beetle associated-bacteria to host monoterpenes and their relationship to insect life histories. Environ Entomol 37:808--817

    Google Scholar 

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475

    Article  PubMed  CAS  Google Scholar 

  • Addison A, Powell JA, Six DL, Moore M, Bentz BJ (2013) The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. J Theor Biol. doi:10.1016/j.jtbi.2013.06.012

  • Aukema BH, Werner RA, Haberkern KE, Illman BL, Clayton MK, Raffa KF (2005) Quantifying sources of variation and frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle-symbiont relationships. For Ecol Manag 217:187–202

    Article  Google Scholar 

  • Ayres MP, Wilkens RT, Ruel JJ (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210

    Article  Google Scholar 

  • Bandi C, Sironi M, Damiana G, Magrassi L, Nalepa CA, Laudani U, Sacchi L (1995) The establishment of intracellular symbiosis in an ancestor of cockroaches and termites. Proc Biol Sci 259:293–299

    Article  PubMed  CAS  Google Scholar 

  • Barke J, Seipke RF, Grueschow S, Heavens D, Drou N, Bibb MJ, Goss RJM, Yu DW, Hutchings MI (2010) A mixed community of Actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109

    Article  PubMed  CAS  Google Scholar 

  • Barras SJ (1970) Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Ann Entomol Soc Am 63:1187–1190

    Google Scholar 

  • Bentz BJ, Six DL (2006) Ergosterol content of four fungal symbionts associated with Dendroctonus ponderosae and D. rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194

    Article  CAS  Google Scholar 

  • Bentz B, Logan J, Macmahon L, Allen CD, Ayres M, Berg E, Carroll A, Hanson M, Hicke J, Joyce L, Macfarlane W, Munson S, Negron J, Paine T, Powell J, Raffa K, Regniere J, Reid M, Romme B, Seybold S, Six D, Tomback D, Vandygriff J, Veblen T, White M, Witcosky L, Wood D (2009) Bark beetle outbreaks in Western North America: Causes and consequences. University of Utah Press, Salt Lake City, pp. 1--44

  • Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, Hick JA, Kelsey RG, Negron JF, Seybold SJ (2010) Climate change and bark beetles in the western United States and Canada; direct and indirect effects. Bioscience 60:602–613

    Article  Google Scholar 

  • Bleiker K, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396

    Article  PubMed  CAS  Google Scholar 

  • Bleiker K, Six DL (2008) Competition and coexistence in a multi-partner mutualism: Interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Microb Ecol 57:191--202.

    Google Scholar 

  • Boone CK, Six DL, Zheng Y, Raffa KF (2008) Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environ Entomol 37:150–161

    Article  PubMed  Google Scholar 

  • Boone C, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol. doi:10.10076/s10886-013-0313-0

  • Brand JM, Schultz J, Barras SJ, Edson LD, Payne TL, Heddon RL (1977) Bark beetle pheromones: enhancement of Dendroctonus frontalis (Coleoptera: Scolytidae) aggregation pheromone by yeast metabolites in laboratory bioassays. J Chem Ecol 3:657–666

    Article  CAS  Google Scholar 

  • Bridges JR, Marler JE, McSparrin BH (1984) A quantitative study of the yeast and bacteria associated with laboratory-reared Dendroctonus frontalis Zimm. (Coleopt., Scolytidae). Z Angew Entomol 97:261–267

    Google Scholar 

  • Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645

    Article  Google Scholar 

  • Cardoza YJ, Moser JC, Klepzig KD, Raffa KF (2008) Multi-partite symbioses among fungi, mites, nematodes, and the spruce beetle, Dendroctonus rufipennis. Environ Entomol 37:956–963

    Article  PubMed  Google Scholar 

  • Clark EL, Karley AJ, Hubbard SF (2010) Insect endosymbionts: manipulators of insect herbivore trophic interactions. Protoplasma 244:25–51

    Article  PubMed  Google Scholar 

  • Clark EL, Huber DPW, Carroll AL (2012) The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins. Environ Entomol 41:392–398

    Article  PubMed  CAS  Google Scholar 

  • Clayton RB (1964) The utilization of sterols by insects. J Lipid Res 5:3–19

    PubMed  CAS  Google Scholar 

  • Cook SS, Shirley BM, Zambino P (2010) Nitrogen concentration in mountain pine beetle larvae reflects nitrogen status of tree host and two fungal associates. Environ Entomol 39:821–826

    Article  PubMed  CAS  Google Scholar 

  • Currie CR, Scott TA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Davis TS, Hofstetter RW (2011) Reciprocal interactions between the bark beetle-associated yeast Orgataea pini and host plant chemistry. Mycologia 103:1201–1207

    Article  PubMed  CAS  Google Scholar 

  • Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61:626–634

    Article  PubMed  Google Scholar 

  • Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol. doi:10.10076/s10886-013-0306-z

  • De Fine Licht HH, Schiott M, Rogowska-Wrzesinska A, Nygaard S, Roepstorff P, Boomsma J (2013) Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci U S A 110:583–587

    Article  PubMed  Google Scholar 

  • Delalibera I, Handelsman J, Raffa KF (2005) Contrasts in cellulytic activities of gut microorganisms between the wood borer, Saperda vestita, (Coleptera: Cerambycidae), and the bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environ Entomol 34:541–547

    Article  Google Scholar 

  • Delalibera I, Vasanthakumar A, Burwitz BJ, Schloss PD, Klepzig KD, Handelsman J, Raffa KF (2007) Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis 43:97–104

    CAS  Google Scholar 

  • Diguistini S, Wang Y, Liao N, Taylor G, Tanguay P, Feau N, Henrissat B, Chan S, Hesse-Haridas S, Robertson G, Birol I, Holt R, Marra M, Hamelin R, Hirst M, Jones S, Bohlmann J, Breuil C (2011) Genome and transcriptome analyses of the mountain pine beetle—fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc Natl Acad Sci U S A 108:2504–2509

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2013) Microbial brokers of insect-plant interactions revisited. J Chem Ecol. doi:10.10076/s10886-013-0308-x

  • Duron O, Hurst GDD (2013) Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol 11:45

    Article  PubMed  Google Scholar 

  • Ellers J, Kiers ET, Currie CR, McDonald BR, Visser B (2012) Ecological interactions drive evolutionary loss of traits. Ecol Lett 15:1071–1082

    Article  PubMed  Google Scholar 

  • Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–390

    Article  PubMed  Google Scholar 

  • Ganter R F (2006) Yeast and Invertebrate associates. In: Rosa CA and Gabor P (eds) Biodiversity and ecophysiology of yeasts, Springer pp. 303–370

  • Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: We have never been individuals. Q Rev Biol 87:325–341

    Article  PubMed  Google Scholar 

  • Giordano L, Garbelotto M, Nicolotti G, Gonthier P (2013) Characterization of fungal communities associated with the bark beetle Ips typographus varies depending on detection method, location, and beetle population levels. Mycol Prog 12:127–140

    Article  Google Scholar 

  • Goodsman DW, Erbilgin N, Lieffers VT (2012) The impact of phloem nutrients on overwintering mountain pine beetle and their fungal symbionts. Environ Entomol 42:478–486

    Article  Google Scholar 

  • Groenhagen U, Baumgartner R, Bailly A, Gardiner MA, Eberl L, Shulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol. doi:10.1007/s10886-013-0315-y

  • Gruwell ME, Morse GE, Normark BB (2007) Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes. Mol Phylogenet Evol 44:267–280

    Article  PubMed  CAS  Google Scholar 

  • Haack RA (2006) Exotic bark- and wood-boring Coleoptera in the United States: recent establishments and interceptions. Can J For Res 36:269–288

    Article  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106:4742–4746

    Article  PubMed  CAS  Google Scholar 

  • Hansen AK, Jeong G, Paine TD, Stouthammer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

    Article  PubMed  CAS  Google Scholar 

  • Harrington TC (1993) Diseases of Conifers Caused by Species of Ophiostoma and Leptographium. In: Wingfield MJ, Seifert KA, Webber JF (eds) Ceratocystis and Ophiostoma: Taxonomy, Ecology and Pathogenicity. American Phytopathological Society, St. Paul, pp 161–172

    Google Scholar 

  • Hofstetter RW, Klepzig KD, Moser JC, Ayres MP (2006a) Seasonal dynamics of mites and fungi and their interaction with southern pine beetle. Environ Entomol 35:22–30

    Article  Google Scholar 

  • Hofstetter RW, Cronin JJ, Klepzig KD, Moser JC, Ayres MP (2006b) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147:679–691

    Article  PubMed  Google Scholar 

  • Hsiau P-TW, Harrington TC (2003) Phylogenetics and adaptations of basidiomycetous fungi fed upon by bark beetles (Coleoptera: Scolytidae). Symbiosis 34:111–131

    Google Scholar 

  • Hulcr J, Adams AS, Raffa KF, Hofstetter RW, Klepzig KD, Currie CR (2011) Presence and diversity of Streptomyces in Dendroctonus and sympatric beetle galleries across North America. Mol Ecol 61:759–768

    Google Scholar 

  • Hunt DWA, Borden JH (1990) Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J Chem Ecol 16:1385–1397

    Article  CAS  Google Scholar 

  • Janson EM, Stireman JO, Singer MS, Abbot P (2008) Phytophagous insect microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012

    Article  PubMed  Google Scholar 

  • Jousselin E, Desdevises Y, Coeur D’Acier A (2009) Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc R Soc B 276:187–196

    Article  PubMed  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  PubMed  CAS  Google Scholar 

  • Kaltenpoth M, Yildirim E, Gurbuz MF, Herzner G, Strohm E (2012) Refining the roots of the beewolf-Streptomyces symbiosis: antennal symbionts in the rare genus Philanthinus (Hymenoptera, Crabronidae). Appl Environ Microbiol 78:822–827

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006) Dipterpene resin acids in conifers. Phytochemistry 67:2415–2423

    Article  PubMed  CAS  Google Scholar 

  • Kikichi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci U S A 109:8618–8622

    Article  Google Scholar 

  • Kirisits T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier F, Day KR, Battisti A, Gregoire J-C, Evans HF (eds) Bark and wood boring insects in living trees in Europe, a synthesis. Kluwer Academic Publishers. Dordrecht, The Netherlands, pp 181–236

    Chapter  Google Scholar 

  • Koch H, Cisarovsky G, Schmid-Hempel P (2012) Ecological effects on gut bacterial communities in wild bumblebee colonies. J Anim Ecol 81:1202–1210

    Article  PubMed  Google Scholar 

  • Koehler S, Kaltenpoth M (2013) Maternal and environmental effects on symbiont-mediated antimicrobial defense. J Chem Ecol. doi:10.10076/s10886-013-0304-1

  • Kolarik M, Kubatova A, Hulcr J, Pazoutova S (2008) Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb Ecol 55:65–80

    Article  PubMed  Google Scholar 

  • Kolarik M, Freeland E, Utely C, Tisserat N (2011) Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia 103:325–332

    Article  PubMed  Google Scholar 

  • Kopper BJ, Klepzig KD, Raffa KF (2004) Components of antagonism and mutualism in Ips pini-fungal interactions: relationship to a life history of colonizing highly stressed and dead trees. Environ Entomol 33:28–34

    Article  Google Scholar 

  • Kost C, Lakatos C, Bottcher I, Arendholz WR, Redenbach M, Wirth R (2007) Non-specific association between filamentous bacteria and fungus-growing ants. Naturwissenschaften 94:821–828

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim J-J, Breuil C (2006) Diversity of fungi associated with the mountain pine beetle. Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Divers 22:91–105

    Google Scholar 

  • Lee S, Hamelin RC, Six DL, Breuil C (2007) Genetic diversity and the presence of two distinct groups in Ophiostom clavigerum associated with Dendroctonus ponderosae in BC and the northern Rocky Mountains. Phytopathology 97:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc B 270:S209–S212

    Article  PubMed  Google Scholar 

  • Lewinsohn D, Lewinsohn E, Bertagnolli CL, Partridge AD (1994) Blue stain fungi and their transport structures on the Douglas-fir beetle. Can J For Res 24:2275–2283

    Article  Google Scholar 

  • Logan JA, Macfarlane WW, Wilcox L (2010) Whitebark pine vulnerability to climat-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem. Ecol Appl 20:895–902

    Article  PubMed  Google Scholar 

  • Lu KC, Allen DG, Bollen WB (1957) Association of yeasts with the Douglas fir beetle. For Sci 3:336–342

    Google Scholar 

  • Lu M, Wingfield MJ, Gillette NE, Mori SR, Sun J (2010) Complex interactions among host pines and fungi vectored by an invasive bark beetle. PLoS One 2:e1302

    Article  CAS  Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: Speciation and morphogenesis. MIT Press, Boston

    Google Scholar 

  • Maurer P, Debieu D, Leroux P, Malosse C, Riba G (2005) Sterols and symbiosis in the leaf-cutter ant Acromyrmex octospinosus (Reich) (Hymenoptera, Formicidae: Attini). Arch Insect Biochem Physiol 20:13–21

    Article  Google Scholar 

  • McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26

    CAS  Google Scholar 

  • McCutcheon JP, von Dohlen CD (2011) An interdependent metabolic patchwork in the nested three-way symbiosis of mealy bugs. Curr Biol 21:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ants and Lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175:E126–E133

    Article  PubMed  Google Scholar 

  • Montllor CB, Maxmen A, Purcell AH (2002) Facultative endosymbionts benefit pea aphid Acythosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Morales-Jimenez J, Zuniga G, Ramirez-Saad HC, Hernandez-Rodriguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizphagous Thomas and Bright (Curculionidae: Scolytinae) and their cellulytic activities. Microb Ecol 64:268–278

    Article  PubMed  Google Scholar 

  • Morales-Jimenez J, Zuniga G, Villa-Tanaca L, Hernadez-Rodriguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879--891

    Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  PubMed  CAS  Google Scholar 

  • Mueller UG (2012) Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr Opin Microbiol 15:269–277

    Article  PubMed  Google Scholar 

  • Mueller U, Gerardo N, Aanen D, Six DL, Schultz T (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595

    Article  Google Scholar 

  • Norris DM, Baker JM, Chu HM (1969) Symbiontic Interrelationships between microbes and ambrosia beetles III. Ergosterol as the source of sterols to the insect. Ann Entomol Soc Am 62:413–414

    CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B 275:293–299

    Article  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bactriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  PubMed  CAS  Google Scholar 

  • Paine TD, Birch MC (1983) Acquisition and maintenance of mycangial fungi of Dendroctonus brevicomis LeConte (Coleoptera: Scolytidae). Environ Entomol 12:1384–1386

    Google Scholar 

  • Paine TD, Hanlon CC (1994) Influence of oleoresin constituents from Pinus ponderosa and P. jeffreyi on growth of the mycangial fungi of Dendroctonus ponderosae and D. jeffreyi. J Chem Ecol 20:2551–2563

    Article  CAS  Google Scholar 

  • Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7:e30768

    Article  PubMed  CAS  Google Scholar 

  • Raffa KF, Smalley EB (1995) Interaction of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle-fungal complexes. Oecologia 102:285–295

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  • Raubenheimer D, Simpson SJ (2010) Nutrient balancing in grasshoppers: behavioral and physiological correlates of dietary breadth. J Exp Biol 216:1669–1681

    Google Scholar 

  • Reynolds HT, Currie CR (2004) Pathogenicity of Escovopsis weberi: the parasite of the attine ant-microbe symbiosis directly consumes the ant-cultivar fungus. Mycologia 96:955–959

    Article  PubMed  Google Scholar 

  • Rice AV, Langor D (2009) Mountain pine beetle-associated blue-stain fungi in lodgepole pine x jack pine hybrids near Grande Prairie, Alberta (Canada). For Pathol 39:323–334

    Article  Google Scholar 

  • Rice AV, Thormann MN, Langor DW (2007) Virulence of, and interactions among, mountain pine beetle-associated blue-stain fungi on two pine species and their hybrids in Alberta. Can J Bot 85:316–323

    Article  Google Scholar 

  • Rice AV, Thorman MN, Langor DW (2008) Mountain pine beetle-associated blue-stain fungi are differentially adapted to boreal temperatures. For Pathol 38:113–123

    Article  Google Scholar 

  • Rivera FN, Gonzalez E, Gomex Z, Lopez N, Hernandez-Rodriguez C, Berkov A, Zuniga G (2009) Gut-associated yeast in bark beetles of the genus Dendroctonus Erichson (Coleoptera: Curculionidae: Scolytinae). Biol J Linn Soc 98:325–342

    Article  Google Scholar 

  • Roe AD, James PMA, Rice AV, Cooke JEK, Sperling FA (2011a) Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. Microb Ecol 62:347–360

    Article  PubMed  Google Scholar 

  • Roe AD, Rice AV, Coltman DW, Cooke JEK, Sperling FAH (2011b) Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 20:584–600

    Article  PubMed  Google Scholar 

  • Rohlfs M, Kurschner L (2010) Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. J Appl Entomol 134:667–671

    Google Scholar 

  • Russell JA, Moreau C, Goldman-Huertas BB, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci U S A 106:21236–21241

    Article  PubMed  CAS  Google Scholar 

  • Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A 106:19521–19526

    Article  PubMed  CAS  Google Scholar 

  • Sabree ZL, Huang CY, Arakawa G, Tokuda G, Lo N, Watanabe H, Moran NA (2012) Genome shrinkage and loss of nurtrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Appl Environ Microbiol 78:204–210

    Article  PubMed  CAS  Google Scholar 

  • Safranyik L, Carroll AL, Regniere J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the northern boreal forest of North America. Can Entomol 142:415–442

    Article  Google Scholar 

  • Scott JJ, Dong-Chan O, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63

    Article  PubMed  CAS  Google Scholar 

  • Seipke RF, Barke J, Brearley C, Hill L, Yu DW, Goss RJ, Hutchings MI (2011) A single Streptomyces symbiont makes multiple antifungals to support the fungus farming ant Acromyrmex octospinosus. PLoS 6:e22028

    CAS  Google Scholar 

  • Sevim A, Gokce C, Erbas Z, Ozkan F (2012) Bacteria from Ips sexdentatus (Coleoptera: Curculionidae) and their biocontrol potential. J Basic Microbiol 52:695–704

    Article  PubMed  Google Scholar 

  • Shifrine M, Phaff HJ (1956) The association of yeasts with certain bark beetles. Mycologia 48:41–55

    Article  Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407:81–86

    Article  PubMed  CAS  Google Scholar 

  • Six DL (2009) Climate change and mutualism. Nat Microbiol Rev 7:686

    Article  CAS  Google Scholar 

  • Six DL (2012) Ecological and Evolutionary determinants of bark beetle-fungus symbioses. Insects 3:339–366

    Article  Google Scholar 

  • Six DL, Bentz BJ (2003) Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can J For Res 33:1815–1820

    Article  Google Scholar 

  • Six DL, Bentz BJ (2007) Temperature determines the relative abundance of symbionts in a multipartite bark beetle-fungus symbiosis. Microb Ecol 54:112–118

    Article  PubMed  CAS  Google Scholar 

  • Six DL, Paine TD (1997) Ophiostoma clavigerum is the mycangial fungus of the Jeffrey pine beetle, Dendroctonus jeffreyi (Coleoptera: Scolytidae). Mycologia 89:858--866

    Google Scholar 

  • Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401

    Google Scholar 

  • Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272

    Article  PubMed  CAS  Google Scholar 

  • Six DL, DE Beer ZW, Duong T, Carroll AL, Wingfield MJ (2011a) Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae. Antonie Van Leeuwenhoek 100:231–244

    Article  PubMed  Google Scholar 

  • Six DL, Poulsen M, Hansen AK, Wingfield MJ, Roux J, Eggleton P, Slippers B, Paine TD (2011b) Anthropogenic effects on insect-microbial symbioses in forest and savanna ecosystems. Symbiosis 53:101–121

    Article  CAS  Google Scholar 

  • Snyder AK, Deberry JW, Runyen-Janecky L, Rio RVM (2010) Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts. Proc R Soc B 277:2389–2397

    Article  PubMed  CAS  Google Scholar 

  • Starmer WT, Aberdeen V (1990) The nutritional importance of pure and mixed cultures of yeasts in the development of Drosophila mulleri larvae in Opuntia tissues and its relation to host plant shifts. In: Ecology and Evolutionary genetics of Drosophila. Monographs in Evolutionary Biology, Springer, pp. 145–160

  • Sudakaran S, Hassan S, Kost C, Kaltenpoth M (2012) Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera: Pyrrhocoridae). Mol Ecol 21:6134–6151

    Article  PubMed  CAS  Google Scholar 

  • Suen G, Telling C, Lewyn L, Holt C, Abouheif E, Bornberg-Bauer E, Bouffard P, Caldera E, Cash E, Cavanaugh A, Denas O, Elhaik E, Fave’ M-J, Gadau J, Gibson J, Graur D, Grubbs K, Hagen D, Harkins T, Helmkampf M, Hu H, Johnson B, Kim J, Marsh S, Moeller J, Munoz-Torres M, Murphy M et al (2011) The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLoS Genet 7:e1002007

    Article  PubMed  Google Scholar 

  • Sun J, Min L, Gillette NE, Wingfield MJ (2013) Red turpentine beetle: innocuous native becomes tree killer in China. Annu Rev Entomol 58:293–311

    Article  PubMed  CAS  Google Scholar 

  • Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Askoy S (2006) Masive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156

    Article  PubMed  CAS  Google Scholar 

  • Tsui CKM, Roe AD, El-Kassaby YA, Rice AV, Alamouti SM, Sperling FHA, Cooke JEK, Bohlmann J, Hamelin RC (2011) Population structure and migration pattern of a conifer pathogen, Grosmannia clavigera, as influenced by its symbiont, the mountain pine beetle. Mol Ecol 21:71–86

    Article  PubMed  Google Scholar 

  • Vega FE, Dowd PF (2005) The role of yeasts as insect endosymbionts. In: Insect fungal associations: Ecology and evolution. In: Vega FE and Blackwell M (eds). Oxford University Press, Oxford, pp. 211–243

  • Vo T, Meuller UG, Mikheyev AS (2009) Free-living fungal symbionts (Lepiotaceae) of fungus-growing ants (Attini: Formicidae). Mycologia 101:206–210

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Lim L, Diguistini S, Robertson G, Bohlmann J, Breuil C (2013) A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine. New Phytol 197:886–898

    Article  PubMed  CAS  Google Scholar 

  • Webber JF (1990) Relative effectiveness of Scolytus scolytus, S. multistriatus, and S. kirschii as vectors of Dutch elm disease. Eur J For Pathol 20:184–192

    Article  Google Scholar 

  • Weldon SR, Strand MR, Oliver KM (2013) Phage loss and the breakdown of defensive symbiosis in aphids. Proc, R. Soc. B. doi:10.1098/rspd.2012.2103, 280

    Google Scholar 

  • Wernegreen JJ (2012) Mutualism meltdown in insects: bacteria constrain thermal adaptation. Curr Opin Microb 15:255–262

    Article  Google Scholar 

  • Whitney HS, Farris SH (1970) Maxillary mycangium in mountain pine beetle. Science 167:54–55

    Article  PubMed  CAS  Google Scholar 

  • Whitney HS, Bandoni RJ, Oberwinkler F (1987) Entomocorticum dendroctoni gen. et sp. nov. (Basidomycotina), a possible nutritional symbiote of the mountain pine beetle in British Columbia. Can J Bot 65:95–102

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. N Z J For Sci 40:S95–S103

    Google Scholar 

  • Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera:Scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1–1359

    Google Scholar 

  • Wu D, Daugherty SC, van Aken SE, Pai GH, Watkins KL, Kouhri H, Tallon LJ, Zaborsky J, Dunbar MHE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e188

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Leadbetter JR (2012) Evidence for cascades of perturbation and adaptation in the metabolic genes of higher termite gut symbionts. MBio 3. doi: 10.1128/mBio.00223-12

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants. FEMS Microbiol Rev 32:723–735

    Article  PubMed  CAS  Google Scholar 

  • Zipfel RD, DE Beer ZW, Jacobs K, Wingfield BD, Wingfield MJ (2006) Multigene phylogenies define Ceratocystiopsis and Grosmannia distinct from Ophiostoma. Stud Mycol 55:75–97

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana L. Six.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Six, D.L. The Bark Beetle Holobiont: Why Microbes Matter. J Chem Ecol 39, 989–1002 (2013). https://doi.org/10.1007/s10886-013-0318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0318-8

Keywords

Navigation