Skip to main content
Log in

Insect endosymbionts: manipulators of insect herbivore trophic interactions?

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Throughout their evolutionary history, insects have formed multiple relationships with bacteria. Although many of these bacteria are pathogenic, with deleterious effects on the fitness of infected insects, there are also numerous examples of symbiotic bacteria that are harmless or even beneficial to their insect host. Symbiotic bacteria that form obligate or facultative associations with insects and that are located intracellularly in the host insect are known as endosymbionts. Endosymbiosis can be a strong driving force for evolution when the acquisition and maintenance of a microorganism by the insect host results in the formation of novel structures or changes in physiology and metabolism. The complex evolutionary dynamics of vertically transmitted symbiotic bacteria have led to distinctive symbiont genome characteristics that have profound effects on the phenotype of the host insect. Symbiotic bacteria are key players in insect–plant interactions influencing many aspects of insect ecology and playing a key role in shaping the diversification of many insect groups. In this review, we discuss the role of endosymbionts in manipulating insect herbivore trophic interactions focussing on their impact on plant utilisation patterns and parasitoid biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SOPE:

Sitophilus oryzae primary endosymbiont

SZPE:

Sitophilus zeamais primary endosymbiont

PAXS:

Pea aphid X-type symbiont

PGRPs:

Peptidoglycan recognition proteins

Jak/STAT:

Janus kinase/signal transducers and activators of transcription proteins

APSE-1:

Bacteriophage 1, Acyrthosiphon pisum secondary endosymbiont

APSE-3:

Bacteriophage 3, Acyrthosiphon pisum secondary endosymbiont

CI:

Cytoplasmic incompatibility

T3SSs:

Type 3 secretion systems

UV-B:

Ultraviolet B light

References

  • Akman L, Yamashita A, Watanabe H, Oshima K, Shiba T, Hattori M, Aksoy S (2002) Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet 32:402–407

    Article  PubMed  CAS  Google Scholar 

  • Altincicek B, Gross J, Vilcinskas A (2008) Wounding-mediated gene expression and accelerated viviparous reproduction of the pea aphid Acyrthosiphon pisum. Insect Mol Biol 17:711–716

    Article  PubMed  CAS  Google Scholar 

  • An Nguyen TT, Michaud D, Cloutier C (2007) Proteomic profiling of aphid Macrosiphum euphorbiae responses to host-plant-mediated stress induced by defoliation and water deficit. J Insect Physiol 53:601–611

    Article  PubMed  CAS  Google Scholar 

  • Baumann P (2005) Biology bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Entomol 59:155–189

    CAS  Google Scholar 

  • Baumann P, Lai C-Y, Roubakhsh D, Moran NA, Clark MA (1995a) Genetics, physiology and evolutionary relationships of the genus Buchnera—intracellular symbionts of aphids. Annu Rev Microbiol 49:55–94

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Lai C-Y, Baumann L, Rouhbakhsh D, Moran NA, Clark MA (1995b) Mutualistic associations of aphids and prokaryotes: biology of the genus Buchnera. Appl Environ Microbiol 61:1–7

    PubMed  CAS  Google Scholar 

  • Baumann L, Baumann P, Moran NA, Sandstrom J, Thao ML (1999) Genetic characterization of plasmids containing genes encoding enzymes of leucine biosynthesis in endosymbionts (Buchnera) of aphids. J Mol Evol 48:77–85

    Article  PubMed  CAS  Google Scholar 

  • Baumann L, Clark MA, Rouhbakhsh D, Baumann P, Moran NA, Voegtlin DJ (1997) Endosymbionts (Buchnera) of the aphid Uroleucon sonchi contain plasmids with trpEG and remnants of trpE pseudogenes. Curr Microbiol 35:18–21

    Article  CAS  Google Scholar 

  • Baumann L, Thao ML, Hess JM, Johnson MW, Baumann P (2002) The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sap-sucking insects. Appl Environ Microbiol 68:3198–3205

    Article  PubMed  CAS  Google Scholar 

  • Bensadia F, Boudreault S, Guay JF, Michaud D, Cloutier C (2006) Aphid clonal resistance to a parasitoid fails under heat stress. J Insect Physiol 52:146–157

    Article  PubMed  CAS  Google Scholar 

  • Bermingham J, Wilkinson TL (2010) The role of intracellular symbiotic bacteria in the amino acid nutrition of embryos from the black bean aphid, Aphis fabae. Entomol Exp Appl 134:272–279

    Article  Google Scholar 

  • Bermingham J, Rabatel A, Calevro F, Vinuelas J, Febvay G, Charles H, Douglas A, Wilkinson T (2009) Impact of host developmental age on the transcriptome of the symbiotic bacterium Buchnera aphidicola in the pea aphid (Acyrthosiphon pisum). Appl Environ Microbiol 75:7294–7297

    Article  PubMed  CAS  Google Scholar 

  • Birkle LM, Minto LB, Douglas AE (2002) Relating genotype and phenotype for tryptophan synthesis in an aphid–bacterial symbiosis. Physiol Entomol 27:302–306

    Article  CAS  Google Scholar 

  • Birkle LM, Minto LB, Walters KFA, Douglas AE (2004) Microbial genotype and insect fitness in an aphid–bacterial symbiosis. Func Ecol 18:598–604

    Article  Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Wiley, New York

    Google Scholar 

  • Burke GR, Normark BB, Favret C, Moran NA (2009) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol 75:5328–5335

    Article  PubMed  CAS  Google Scholar 

  • Burke G, Fiehn O, Moran N (2010) Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J 4:242–252

    Article  PubMed  Google Scholar 

  • Caillaud CM, Via S (2000) Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am Nat 156:606–621

    Article  Google Scholar 

  • Carpenter KJ, Horak A, Keeling PJ (2010) Phylogenetic position and morphology of Spirotrichosomidae (Parabasalia): new evidence from Leptospironympha of Cryptocercus punctulatus. Protist 161:122–132

    Article  PubMed  CAS  Google Scholar 

  • Chandler SM, Wilkinson TL, Douglas AE (2008) Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proc R Soc London Ser B 275:565–570

    Article  CAS  Google Scholar 

  • Chen D-Q, Montllor CB, Purcell AH (2000) Fitness effects of two facultative endosymbiotic bacteria on the pea aphid, Acyrthosiphon pisum, and the blue alfalfa aphid, A. kondoi. Entomol Exp Appl 95:315–323

    Article  Google Scholar 

  • Chiel E, Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Katzir N, Inbar M, Ghanim M (2007) Biotype dependant secondary symbionts communities in sympatric populations of Bemisia tabaci. Bull Entomol Res 97:407–413

    Article  PubMed  CAS  Google Scholar 

  • Chiel E, Inbar M, Mozes-Daube N, White JA, Hunter MS, Zchori-Fein E (2009a) Assessments of fitness effects by the facultative symbiont Rickettsia in the sweetpotato whitefly (Hemiptera: Aleyrodidae). Annals Entomol Soc Am 102:413–418

    Article  Google Scholar 

  • Chiel E, Zchori-Fein E, Inbar M, Gottlieb Y, Adachi-Hagimori T, Kelly SE, Asplen MK, Hunter MS (2009b) Almost there: transmission routes of bacterial symbionts between trophic levels. PLoS One 4:e4767

    Article  PubMed  CAS  Google Scholar 

  • Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54:517–525

    PubMed  CAS  Google Scholar 

  • Clark JW, Hossain S, Burnside CA, Kambhampati S (2001) Coevolution between a cockroach and its bacterial endosymbiont: a biogeographical perspective. Proc R Soc London Ser B 268:393–398

    Article  CAS  Google Scholar 

  • Cloutier C, Douglas AE (2003) Impact of a parasitoid on the bacterial symbiosis of its aphid host. Entomol Exp Appl 109:13–19

    Article  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Plague GR, Wang B, Ochman Moran NA (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci USA 99:12397–12402

    Article  PubMed  CAS  Google Scholar 

  • Dale C, Beeton M, Harbison C, Jones T, Pontes M (2006) Isolation, pure culture and characterization of Candidatus Arsenophonus arthropodicus, an intracellular secondary endosymbiont from the hippoboscid louse-fly, Pseudolynchia canariensis. Appl Environ Microbiol 72:2997–3004

    Article  PubMed  CAS  Google Scholar 

  • Darby AC, Douglas AE (2003) Elucidation of the transmission patterns of an insect-borne bacterium. Appl Environ Microbiol 69:4403–4407

    Article  PubMed  CAS  Google Scholar 

  • Darby AC, Birkle LM, Turner SL, Douglas AE (2001) An aphid-borne bacterium allied to the secondary symbionts of whitefly. FEMS Microbiol Ecol 36:43–50

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Moran NA (2008a) Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Mol Ecol 17:916–929

    PubMed  CAS  Google Scholar 

  • Degnan PH, Moran NA (2008b) Diverse phage-encoded toxins in a protective insect endosymbiont. Appl Environ Microbiol 74:6782–6791

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Lazarus AB, Wernegreen JJ (2005) Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res 15:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Degnan PH, Yub Y, Sisnerosb N, Wingb RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106:9063–9068

    Article  PubMed  Google Scholar 

  • Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, Richards S, Moran NA (2010) Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol. doi:10.1111/j.1462-2920.2009.02085.x

  • Delobel B, Grenier AM (1993) Effect of non-cereal food on cereal weevils and tamarind pod weevil (Coleoptera: Curculionidae). J Stored Prod Res 29:7–14

    Article  Google Scholar 

  • Douglas AE (1992) Requirement of pea aphids (Acyrthosiphon pisum) for their symbiotic bacteria. Entomol Exp Appl 65:195–198

    Article  Google Scholar 

  • Douglas AE (1996) Reproductive failure and the amino acid pools in pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria. J Insect Physiol 42:247–255

    Article  CAS  Google Scholar 

  • Douglas AE (1997) Paralells and contrasts between symbiotic bacteria and bacteria-derived organelles: evidence from Buchnera, the bacterial symbiont of aphids. FEMS Microbiol Ecol 24:1–9

    Article  CAS  Google Scholar 

  • Douglas AE (1998) Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2003) The nutritional physiology of aphids. Adv Insect Physiol 31:73–140

    Article  CAS  Google Scholar 

  • Douglas AE (2009) The microbial dimension in insect nutritional ecology. Func Ecol 23:38–47

    Article  Google Scholar 

  • Douglas AE, François CLM, Minto LB (2006) Facultative ‘secondary’ bacterial symbionts and the nutrition of the pea aphid, Acyrthosiphon pisum. Physiol Entomol 31:262–269

    Article  CAS  Google Scholar 

  • Downie DA, Gullan PJ (2005) Phylogenetic congruence of mealybugs and their primary endosymbionts. J Evol Biol 18:315–324

    Article  PubMed  CAS  Google Scholar 

  • Dunbar HE, Wilson ACC, Ferguson NR, Moran NA (2007) Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biol 5:1006–1015

    Article  CAS  Google Scholar 

  • Estes AM, Hearn DJ, Bronstein JL, Pierson EA (2009) The olive fly endosymbiont, “Candidatus Erwinia dacicola”, switches from an intracellular existence to an extracellular existence during host insect development. Appl Environ Microbiol 75:7097–7106

    Article  PubMed  CAS  Google Scholar 

  • Fares MA, Ruiz-Gonz’alez MX, Moya A, Elena SF, Barrio E (2002) Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417:398

    Article  PubMed  CAS  Google Scholar 

  • Fares MA, Moya A, Barrio E (2005) Adaptive evolution in GroEL from distantly related endosymbiotic bacteria of insects. J Evol Biol 18:651–660

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756

    PubMed  CAS  Google Scholar 

  • Ferrari J, Müller CB, Kraaijeveld AR, Godfray HCJ (2001) Clonal variation and co-variation in aphid resistance to parasitoids and a pathogen. Evolution 55:1805–1814

    PubMed  CAS  Google Scholar 

  • Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Article  Google Scholar 

  • Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–329

    Article  PubMed  Google Scholar 

  • Francis F, Gerkens P, Harmel N, Mazzucchelli G, De Pauw E, Haubruge E (2006) Proteomics in Myzus persicae: effect of aphid host plant switch. Insect Biochem Mol Biol 36:219–227

    Article  PubMed  CAS  Google Scholar 

  • Frantz A, Plantegenest M, Simon J-C (2006) Temporal habitat variability and the maintenance of sex in host populations of the pea aphid. Proc R Soc London Ser B 273:2887–2891

    Article  Google Scholar 

  • Frantz A, Calcagno V, Mieuzet L, Plantegenest M, Simon J-C (2009) Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation. Biol J Linn Soc 97:718–727

    Article  Google Scholar 

  • Fry HRC, Quiring DT, Ryall KL, Dixon PL (2009) Influence of intra-tree variation in phenology and oviposition site on the distribution and performance of Ennomos subsignaria on mature sycamore maple. Ecol Entomol 34:394–405

    Article  Google Scholar 

  • Fukatsu T, Ishikawa H (1996) Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol 26:383–388

    Article  PubMed  CAS  Google Scholar 

  • Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758

    Article  PubMed  CAS  Google Scholar 

  • Funk DJ, Wernegreen JJ, Moran NA (2001) Intraspecific variation in symbiont genomes: bottlenecks and the aphid–Buchnera association. Genetics 157:477–489

    PubMed  CAS  Google Scholar 

  • Fytrou A, Schofield PG, Kraaijeveld AR, Hubbard SF (2006) Wolbachia infection suppresses both host defense and parasitoid counter-defense. Proc R Soc London Ser B 273:791–796

    Article  Google Scholar 

  • Gange AC, Bower E, Brown VK (1999) Positive effects of an arbuscular mycorrhizal fungus on aphid life history traits. Oecologia 120:123–131

    Article  Google Scholar 

  • Gerardo NM, Altincicek B, Anselme C, Atamian H, Barribeau SM, de Vos M, Duncan E, Evans JD, Gabaldon T, Ghanim M, Heddi A, Kaloshian I, Latorre A, Moya A, Nakabachi A, Parker BJ, Perez-Brocal V, Pignatelli M, Rhabe Y, Ramsey JS, Spragg C, Tamames J, Tamarit D, Tamborindeguy C, Vincent-Monegat C, Vilcinskas A (2010) Immunity and other defenses in pea aphids, Acyrthosiphon pisum. Genome Biol 11:R21

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, van Ham RCHJ, Gross R, Moya A (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393

    Article  PubMed  CAS  Google Scholar 

  • Gil R, Sabater-Muñoz B, Perez-Brocal V, Silva FJ, Latorre A (2006) Plasmids in the aphid endosymbiont Buchnera aphidicola with the smallest genomes. A puzzling evolutionary story. Gene 370:17–25

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JP, Kanost MR (1997) Biological mediators of insect immunity. Annu Rev Entomol 42:611–643

    Article  PubMed  CAS  Google Scholar 

  • Giorgini M, Monti MM, Caprio E, Stouthamer R, Hunter MS (2009) Feminisation and the collapse of haplodiploidy in an asexual parasitoid wasp harboring the bacterial symbiont Cardinium. Heredity 102:365–371

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioural and evolutionary ecology. Monographs in behaviour and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Godfray HCJ (2010) The pea aphid genome. Insect Mol Biol 19:1–4

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Valero L, Soriano-Navarro M, Pérez-Brocal V, Heddi A, Moya A, García-Verdugo JM, Latorre A (2004) Coexistence of Wolbachia with Buchnera aphidicola and a secondary symbiont in the aphid Cinara cedri. J Bacteriol 186:6626–6633

    Article  PubMed  CAS  Google Scholar 

  • Gorur G, Lomonaco C, Mackenzie A (2005) Phenotypic plasticity in host-plant specialisation in Aphis fabae. Ecol Entomol 30:657–664

    Article  Google Scholar 

  • Gosalbes MJ, Lamelas A, Moya A, Latorre A (2008) The striking case of tryptophan provision in the cedar aphid Cinara cedri. J Bacteriol 190:6026–6029

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GW, Beck SD (1973) Intracellular symbiotes in the pea aphids, Acyrthosiphon pisum. J Insect Physiol 19:75–84

    Article  Google Scholar 

  • Guay J-F, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926

    Article  PubMed  CAS  Google Scholar 

  • Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc London Ser B 276:987–991

    Article  CAS  Google Scholar 

  • Gwynn DM, Callaghan A, Gorham J, Walters KFA, Fellowes MDE (2005) Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc R Soc London Ser B 272:1803–1808

    Article  CAS  Google Scholar 

  • Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

    Article  PubMed  CAS  Google Scholar 

  • Harris LR, Kelly SE, Hunter MS, Perlman SJ (2010) Population dynamics and rapid spread of Cardinium, a bacterial endosymbiont causing cytoplasmic incompatibility in Encarsia pergandiella (Hymenoptera: Aphelinidae). Heredity 104:238–246

    Article  Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Hawthorne DJ, Via S (2001) Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412:904–907

    Article  PubMed  CAS  Google Scholar 

  • Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69:7216–7223

    Article  PubMed  CAS  Google Scholar 

  • Heath BD, Butcher RDJ, Whitfield WGF, Hubbard SF (1999) Horizontal transfer of Wolbachia between phylogenetically distant insect species by a naturally occurring mechanism. Curr Biol 9:313–316

    Article  PubMed  CAS  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  PubMed  CAS  Google Scholar 

  • Henter HJ, Via H (1995) The potential for co-evolution in a host parasitoid system. I. Genetic variation within an aphid population in susceptibility to a parasitic wasp. Evolution 49:427–438

    Article  Google Scholar 

  • Hinde R (1971) The fine structure of the mycetome symbiotes of the aphids Brevicoryne brassicae, Myzus persicae, and Macrosiphum rosae. J Insect Physiol 17:2035–2045

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Kikuchi Y, Nikoh N, Shimada M, Fukatsu T (2006) Strict host–symbiont cospeciation and reductive genome evolution in insect gut bacteria. PLoS Biol 4:1841–1851

    Article  CAS  Google Scholar 

  • Huigens ME, Stouthamer R (2003) Parthenogenesis associated with Wolbachia. In: K Bourtzis, TA Miller (eds) Insect symbioses. CRC Press, Florida

    Google Scholar 

  • Huigens ME, Luck RF, Klaassen RHG, Maas MFPM, Timmermans MJTN, Stouthamer R (2000) Infectious parthenogenesis. Nature 405:178–179

    Article  PubMed  CAS  Google Scholar 

  • Johnson SN, Hawes C, Karley AJ (2009) Reappraising the role of plant nutrients as mediators of interactions between root- and foliar-feeding insects. Func Ecol 23:699–706

    Article  Google Scholar 

  • Jousselin E, Desdevises Y, Coeur d’acier A (2009) Fine-scale cospeciation between Brachycaudus and Buchnera aphidicola: bacterial genome helps define species and evolutionary relationships in aphids. Proc R Soc London Ser B 276:187–196

    Article  Google Scholar 

  • Karley AJ, Douglas AE, Parker WE (2002) Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. J Exp Biol 205:3009–3018

    PubMed  CAS  Google Scholar 

  • Karley AJ, Hawes C, Iannetta PPM, Squire GR (2008) Intraspecific variation in Capsella bursa-pastoris in plant quality traits for insect herbivores. Weed Res 48:147–156

    Article  Google Scholar 

  • Kenyon SG, Hunter MS (2007) Manipulation of oviposition choice of the parasitoid wasp, Encarsia pergandiella, by the endosymbiotic bacterium Cardinium. J Evol Biol 20:707–716

    Article  PubMed  CAS  Google Scholar 

  • Koga R, Tsuchida T, Fukatsu T (2003) Changing partners in an obligate symbiosis: a facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Proc R Soc London Ser B 270:2543–2550

    Article  Google Scholar 

  • Koga R, Tsuchida T, Sakurai M, Fukatsu T (2007) Selective elimination of aphid endosymbionts: effects of antibiotic dose and host genotype, and fitness consequences. FEMS Microbiol Ecol 60:229–239

    Article  PubMed  CAS  Google Scholar 

  • Komaki K, Ishikawa H (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J Mol Evol 48:717–722

    Article  PubMed  CAS  Google Scholar 

  • Kono M, Koga R, Shimada M, Fukatsu T (2008) Infection dynamics of coexisting beta- and gammaproteobacteria in the nested endosymbiotic system of mealybugs. Appl Environ Microbiol 74:4175–4184

    Article  PubMed  CAS  Google Scholar 

  • Lamelas A, Pérez-Brocal V, Gómez-Valero L, Gosalbes MJ, Moya A, Latorre A (2008) Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74:4236–4240

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre C, Charles H, Vallier A, Delobel B, Farrell B, Heddi A (2004) Endosymbiont phylogenesis in the Dryophthoridae weevils: evidence for bacterial replacement. Mol Biol Evol 21:965–973

    Article  PubMed  CAS  Google Scholar 

  • Leonardo TE (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecol Lett 7:461–468

    Article  Google Scholar 

  • Leonardo TE, Mondor EB (2006) Symbiont modifies host life-history traits that affect gene flow. Proc R Soc London Ser B 273:1079–1084

    Article  CAS  Google Scholar 

  • Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc London Ser B (Suppl) 270:S209–S212

    Article  Google Scholar 

  • López-Sánchez MJ, Neef A, Peretó J, Patiño-Navarrete R, Pignatelli M, Latorre A, Moya A (2009) Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Biol 5(11):e1000721

    Google Scholar 

  • Martel J, Hanhimaki S, Kause A, Haukioja E (2001) Diversity of birch sawfly responses to seasonally atypical diets. Entomol Exp Appl 100:301–309

    Article  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in response to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • McCutcheon JP, Moran NA (2007) Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA 104:19392–19397

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009a) Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA 106:15394–15399

    Article  PubMed  Google Scholar 

  • McCutcheon JP, McDonald BR, Moran NA (2009b) Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont. PLoS Gen 5:1–11

    Google Scholar 

  • McLean DL, Houk EJ (1973) Phase contrast and electron microscopy of the mycetocytes and symbiotes of the pea aphid Acyrthosiphon pisum. J Insect Physiol 9:625–633

    Article  Google Scholar 

  • Miao X, Huang Y, Zhu X, Ding D (2004) A comparative study on reproduction and development of the parasitoid Lysiphlebus japonicus (Hymenoptera: Aphidiidae) in symbiotic and aposymbiotic host aphids. Appl Entomol Zool 39:243–248

    Article  Google Scholar 

  • Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17:589–596

    Article  PubMed  CAS  Google Scholar 

  • Miura T, Braendle C, Shingleton A, Sisk G, Kambhampati S, Stern DL (2003) A comparison of parthenogenetic and sexual embryogenesis of the pea aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). J Exp Zool 295B:59–81

    Article  Google Scholar 

  • Montllor CB, Maxman A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyathosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  • Moran NA (1996) Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93:2873–2878

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA 104:8627–8633

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Baumann P (1994) Phylogenetics of cytoplasmically inherited microorganisms of arthropods. TREE 9(1):15–20

    Google Scholar 

  • Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15:1251–1261

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc R Soc London Ser B 253:167–171

    Article  Google Scholar 

  • Moran NA, Dale C, Dunbar H, Smith WA, Ochman H (2003a) Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 5:116–126

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Plague GR, Sandstrom JP, Wilcox JL (2003b) A genomic perspective on nutrient provisioning by bacterial symbionts of insects. Proc Natl Acad Sci USA 100:14543–14548

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Tran P, Gerardo MN (2005a) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Russell JA, Koga R, Fukatsu T (2005b) Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Dunbar HE, Wilcox JL (2005c) Regulation of transcription in a reduced bacterial genome: nutrient-provisioning genes of the obligate symbiont Buchnera aphidicola. J Bacteriol 187:4229–4237

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, Degnan PH, Santos SR, Dunbar HE, Ochman H (2005d) The players in a mutualistic symbiosis: insects, bacteria, viruses, and virulence genes. Proc Natl Acad Sci USA 102:16919–16926

    Article  PubMed  CAS  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Gen 42:165–190

    Article  CAS  Google Scholar 

  • Moran NA, McLaughlin HJ, Sorek R (2009) The dynamics and time scale of ongoing genomic erosion in symbiotic bacteria. Science 323:379–382

    Article  PubMed  CAS  Google Scholar 

  • Mouton L, Dedeine F, Henri H, Boulétreau M, Profizi N, Vavre F (2004) Virulence, multiple infections and regulation of symbiotic population in the Wolbachia–Asobara tabida symbiosis. Genetics 168:181–189

    Article  PubMed  Google Scholar 

  • Moya A, Gil R, Latorre A (2009) The evolutionary history of symbiotic associations among bacteria and their animal hosts: a model. Clin Microbiol Infect 15:11–13

    Article  PubMed  Google Scholar 

  • Munson MA, Baumann P, Clark MA, Baumann L, Moran NA, Voegtlin DJ, Campbell BC (1991) Evidence for the establishment of aphid-eubacterium endosymbiosis in an ancestor of four aphid families. J Bacteriol 173:6321–6324

    PubMed  CAS  Google Scholar 

  • Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45:1–6

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:206

    Article  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci USA 102:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2006) Costs and benefits of a superinfection of facultative symbionts in aphids. Proc R Soc London Ser B 273:1273–1280

    Article  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc London Ser B 275:293–299

    Article  Google Scholar 

  • Oliver KM, Degnan PH, Hunter MS, Moran NA (2009) Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 325:992–994

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  PubMed  CAS  Google Scholar 

  • Pannebakker BA, Loppin B, Elemans CP, Humblot L, Vavre F (2007) Parasitic inhibition of cell death facilitates symbiosis. Proc Natl Acad Sci USA 104:213–215

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Brocal V, Gil R, Ramos S, Lamelas A, Postigo M, Michelena JM, Silva FJ, Moya A, Latorre A (2006) A small microbial genome: the end of a long symbiotic relationship? Science 314:312–313

    Article  PubMed  CAS  Google Scholar 

  • Pettersson ME, Berg OG (2007) Muller’s ratchet in symbiont populations. Genetica 130:199–211

    Article  PubMed  Google Scholar 

  • Pontes MH, Dale C (2006) Culture and manipulation of insect facultative symbionts. Trends Microbiol 14:405–411

    Article  CAS  Google Scholar 

  • Preedy KF, Schofield PG, Liu S, Matzavinos A, Chaplain MA, Hubbard SF (2010) Modelling contact spread of infection in host-parasitoid systems: vertical transmission of pathogens can cause chaos. J Theor Biol 262:441–451

    Article  PubMed  Google Scholar 

  • Pugsley AP, Francetic O, Driessen AJ, de Lorenzo V (2004) Getting out: protein traffic in prokaryotes. Mol Microbiol 52:3–11

    Article  PubMed  CAS  Google Scholar 

  • Ramsey JS, MacDonald SJ, Jander G, Nakabachi A, Thomas GH, Douglas AE (2010) Genomic evidence for complementary purine metabolism in the pea aphid, Acyrthosiphon pisum, and its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol 19:241–248

    Article  PubMed  CAS  Google Scholar 

  • Raymond B, Darby AC, Douglas AE (2000) Intraguild predators and the spatial distribution of a parasitoid. Oecologia 124:367–372

    Article  Google Scholar 

  • Renwick JA (2001) Variable diets and changing taste in plant–insect relationships. J Chem Ecol 27:1063–1076

    Article  PubMed  CAS  Google Scholar 

  • Reymond N, Calevro F, Vinuelas J, Morin N, Rahbe Y, Febvay G, Laugier C, Douglas AE, Fayard J-M, Charles H (2006) Different levels of transcriptional regulation due to trophic constraints in the reduced genome of Buchnera aphidicola APS. Appl Environ Microbiol 72:7760–7766

    Article  PubMed  CAS  Google Scholar 

  • Rio RV, Lefevre C, Heddi A, Aksoy S (2003) Comparative genomics of insect-symbiotic bacteria: influence of host environment on microbial genome composition. Appl Environ Microbiol 69:6825–6832

    Article  PubMed  CAS  Google Scholar 

  • Russell JA, Latorre A, Muñoz BS, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Sabree ZL, Kambhampati S, Moran NA (2009) Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Nat Acad Sci USA 106:19521–19526

    Article  PubMed  Google Scholar 

  • Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210

    Article  Google Scholar 

  • Sandström J, Pettersson J (1994) Amino acid composition of phloem sap and the relation to intraspecific variation in pea aphid (Acyrthosiphon pisum) performance. J Insect Physiol 40:947–955

    Article  Google Scholar 

  • Sandström J, Telang A, Moran NA (2000) Nutritional enhancement of host plants by aphids—a comparison of three aphid species on grasses. J Insect Physiol 46:33–40

    Article  PubMed  Google Scholar 

  • Sandström JP, Russell JA, White JP, Moran NA (2001) Independent origins and horizontal transfer of bacterial symbionts of aphids. Mol Ecol 10:217–228

    Article  PubMed  Google Scholar 

  • Sasaki T, Ishikawa H (1995) Production of essential amino acids from glutamate by mycetocyte symbionts of the pea aphid, Acyrthosiphon pisum. J Insect Physiol 41:41–46

    Article  CAS  Google Scholar 

  • Sasaki T, Hayashi H, Ishikawa H (1991) Growth and reproduction of the symbiotic and aposymbiotic pea aphids Acyrthosiphon pisum maintained on artificial diets. J Insect Physiol 37:749–756

    Article  CAS  Google Scholar 

  • Sauer C, Stackebrandt E, Gadau J, Hölldobler B, Gross R (2000) Systematic relationships and cospeciation of bacterial endosymbionts and their carpenter ant host species: proposal of the new taxon Candidatus Blochmannia gen. nov. Int J Syst Evol Microbiol 50:1877–1886

    PubMed  CAS  Google Scholar 

  • Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  PubMed  CAS  Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect–plant biology. Oxford University Press, Oxford

    Google Scholar 

  • Shigenobu S, Watanabe H, Hattori M, Sakakl Y, Ishikawa H (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS Nature 407:81–86

    CAS  Google Scholar 

  • Simon J-C, Carré S, Boutin M, Prunier-Leterme N, Sabater-Muñoz B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc London Ser B 270:1703–1712

    Article  Google Scholar 

  • Simon J-C, Sakurai M, Bonhomme J, Tsuchida T, Koga R, Fukatsu T (2007) Elimination of a specialised facultative symbiont does not affect the reproductive mode of its aphid host. Ecol Entomol 32:296–301

    Article  Google Scholar 

  • Stavrinides J, McCloskey JK, Ochman H (2009) Pea aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl Environ Microbiol 75:2230–2235

    Article  PubMed  CAS  Google Scholar 

  • Stoll S, Feldhaar H, Gross R (2009) Transcriptional profiling of the endosymbiont Blochmannia floridanus during different developmental stages of its holometabolous ant host. Environ Microbiol 11:877–888

    Article  PubMed  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  PubMed  CAS  Google Scholar 

  • Tamames J, Gil R, Latorre A, Peretó J, Silva FJ, Moya A (2007) The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evol Biol 7:181

    Article  PubMed  CAS  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson A-S, Wernegreen JJ, Sandström JP, Moran NA, Andersson SGE (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  PubMed  CAS  Google Scholar 

  • Telang A, Sandström J, Dyreson E, Moran NA (1999) Feeding damage by Diuraphis noxia results in a nutritionally enhanced phloem diet. Entomol Exp Appl 91:403–412

    Article  Google Scholar 

  • Thao ML, Baumann P (2004) Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternorrhyncha: Aleyrodidae). Curr Microbiol 48:140–144

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Baumann L, Baumann P, Moran NA (1998) Endosymbionts (Buchnera) from the aphids Schizaphis graminum and Diuraphis noxia have different copy numbers of the plasmid containing the leucine biosynthetic genes. Curr Microbiol 36:238–240

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P (2000a) Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol 41:300–304

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P (2000b) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Gullan PJ, Baumann P (2002) Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol 68:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • Thomas GH, Zucker J, Macdonald SJ, Sorokin A, Goryanin I, Douglas AE (2009) A fragile metabolic network adapted for cooperation in the symbiotic bacterium Buchnera aphidicola. BMC Syst Biol 3:24

    Article  PubMed  CAS  Google Scholar 

  • Toh H, Weiss BL, Perkin SA, Yamashita A, Oshima K, Hattori M, Aksoy S (2006) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16:149–156

    Article  PubMed  CAS  Google Scholar 

  • Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, Fukatsu T (2010) Candidatus “Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol 76:275–282

    Article  PubMed  CAS  Google Scholar 

  • Tokuda G, Watanabe H (2007) Hidden cellulases in termites: revision of an old hypothesis. Biol Lett 3:336–339

    Article  PubMed  CAS  Google Scholar 

  • Tosh CR, Walters KFA, Douglas AE (2001) On the mechanistic basis of plant affiliation in the black bean aphid (Aphis fabae) species complex. Entomol Exp Appl 99:121–125

    Article  Google Scholar 

  • Tosh CR, Morgan D, Walters KFA, Douglas AE (2004) The significance of overlapping plant range to a putative adaptive trade-off in the black bean aphid Aphis fabae Scop. Ecol Entomol 29:488–497

    Article  Google Scholar 

  • Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida T, Koga R, Sakurai M, Fukatsu T (2006) Facultative bacterial endosymbionts of three aphid species, Aphis craccivora, Megoura crassicauda and Acyrthosiphon pisum, sympatrically found on the same host plants. Appl Entomol Zool 41:129–137

    Article  Google Scholar 

  • Turelli M (1994) Evolution of incompatibility inducing microbes and their hosts. Evolution 48:1500–1513

    Article  Google Scholar 

  • Turelli M, Hoffman AA (1995) Microbe-induced cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140:1319–1338

    PubMed  CAS  Google Scholar 

  • van der Wilk F, Dullemans AM, Verbeek M, van den Heuvel JFJM (1999) Isolation and characterization of APSE-1, a bacteriophage infecting the secondary endosymbiont of Acyrthosiphon pisum. Virology 262:104–113

    Article  PubMed  Google Scholar 

  • van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernandez JM, Jimenez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Moran F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci USA 100:581–586

    Article  PubMed  CAS  Google Scholar 

  • Vavre F, Fleury F, Varaldi J, Fouillet P, Boulétreau M (2000) Evidence for female mortality in Wolbachia-mediated cytoplasmic incompatibility in haplodiploid insects: epidemiologic and evolutionary consequences. Evolution 54:191–200

    PubMed  CAS  Google Scholar 

  • Via S (1999) Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choice. Evolution 53:1446–1457

    Article  Google Scholar 

  • Via S, Hawthorne DJ (2002) The genetic architecture of ecological specialization: correlated gene effects on host use and habitat choice in pea aphids. Am Nat 159:S76–S88

    Article  PubMed  Google Scholar 

  • Viñuelas J, Calevro F, Remond D, Bernillon J, Rahbe Y, Febvay G, Fayard J-M, Charles H (2007) Conservation of the links between gene transcription and chromosomal organization in the highly reduced genome of Buchnera aphidicola. BMC Genomics 8:143

    Article  PubMed  CAS  Google Scholar 

  • von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  • Vorburger C, Sandrock C, Gouskov A, Castañeda LE, Ferrari J (2009) Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evolution 63:1439–1450

    Article  PubMed  Google Scholar 

  • Vorburger C, Gehrer L, Rodriguez P (2010a) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111

    Article  PubMed  Google Scholar 

  • Vorburger C, Eugster B, Villiger J, Wimmer C (2010b) Host genotype affects the relative success of competing lines of aphid parasitoids under superparasitism. Ecol Entomol 35:77–83

    Article  Google Scholar 

  • Wackers FL (2004) Assessing the suitability of flowering herbs as parasitoid food sources: flower attractiveness and nectar accessibility. Biol Control 29:307–314

    Article  Google Scholar 

  • Wackers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: making the best of a bad meal? Biol Control 45:176–184

    Article  Google Scholar 

  • Weibull J, Ronquist F, Brishammar S (1990) Free amino acid composition of leaf exudates and phloem sap. A comparative study in oats and barley. Plant Physiol 92:222–226

    Article  PubMed  CAS  Google Scholar 

  • Weinert LA, Welch JJ, Jiggins FM (2009) Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally. Proc R Soc London Ser B 276:3619–3627

    Article  CAS  Google Scholar 

  • Wernegreen JJ (2002) Genome evolution in bacterial endosymbionts of insects. Natl Rev Gen 3:850–861

    Article  CAS  Google Scholar 

  • Wernegreen JJ, Moran NA (2000) Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis. Proc R Soc London Ser B 267:1423–1431

    Article  CAS  Google Scholar 

  • Wernegreen JJ, Moran NA (2001) Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J Bacteriol 183:785–790

    Article  PubMed  CAS  Google Scholar 

  • Werren JH (1997) Wolbachia run amok. Proc Natl Acad Sci USA 94:11154–11155

    Article  PubMed  CAS  Google Scholar 

  • Werren JH, Windsor DM (2000) Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc R Soc London Ser B 267:1277–1285

    Article  CAS  Google Scholar 

  • Wicker C (1983) Differential vitamin and choline requirements of symbiotic and aposymbiotic S. oryzae (Coleoptera: Curculionidae). Comp Biochem Physiol Part A: Physiol 76:177–182

    Article  Google Scholar 

  • Wicker C, Nardon P (1982) Development responses of symbiotic and aposymbiotic weevils, Sitophilus oryzae L. (Coleoptera, Curculionidae) to a diet supplemented with aromatic amino acids. J Insect Physiol 28:1021–1024

    Article  CAS  Google Scholar 

  • Wilcox JL, Dunbar HE, Wolfinger RD, Moran NA (2003) Consequences of reductive evolution for gene expression in an obligate endosymbiont. Mol Microbiol 48:1491–1500

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson TL, Douglas AE (1995a) Aphid feeding as influenced by the disruption of the symbiotic bacteria. J Insect Physiol 41:635–640

    Article  CAS  Google Scholar 

  • Wilkinson TL, Douglas AE (1995b) Why pea aphids (Acyrthosiphon pisum) lacking symbiotic bacteria have elevated levels of the amino acid glutamine. J Insect Physiol 41:921–927

    Article  CAS  Google Scholar 

  • Wilkinson TL, Adams D, Minto LB, Douglas AE (2001) The impact of host plant on the abundance and function of symbiotic bacteria in an aphid. J Exp Biol 204:3027–3038

    PubMed  CAS  Google Scholar 

  • Wilkinson TL, Fukatsu T, Ishikawa H (2003) Transmission of symbiotic bacteria Buchnera to parthenogenetic embryos in the aphid Acyrthosiphon pisum (Hemiptera: Aphidoidea). Arthropod Struct Devel 32:241–245

    Article  CAS  Google Scholar 

  • Wilson ACC, Dunbar HE, Davis GK, Hunter WB, Stern DL, Moran NA (2006) A dual-genome microarray for the pea aphid, Acyrthosiphon pisum, and its obligate bacterial symbiont, Buchnera aphidicola. BMC Genomics 7:50

    Article  PubMed  CAS  Google Scholar 

  • Wilson ACC, Ashton PD, Calevro F, Charles H, Colella S, Febvay G, Jander G, Kushlan PF, Macdonald SJ, Schwartz JF, Thomas GH, Douglas AE (2010) Genomic insight into the amino acid relations of the pea aphid, Acyrthosiphon pisum, with its symbiotic bacterium Buchnera aphidicola. Insect Mol Biol 19:249–258

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Brook Young M, Utterback T, Weidman J, Nierman WC, Paulsen WC, Nelson KE, Tettelin H, O’Neill SL, Eisen JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:e69

    Article  PubMed  Google Scholar 

  • Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, Tallon LJ, Zaborsky JM, Dunbar HE, Tran PL, Moran NA, Eisen JA (2006) Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biol 4:e118

    Article  CAS  Google Scholar 

  • Zientz E, Dandekar T, Gross R (2004) Metabolic interdependence of obligate intracellular bacteria and their insect hosts. Microbiol Mol Biol Rev 68:745–777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

EC was financially supported by a University of Dundee/SCRI (REERAD) Joint PhD Studentship.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily L. Clark.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, E.L., Karley, A.J. & Hubbard, S.F. Insect endosymbionts: manipulators of insect herbivore trophic interactions?. Protoplasma 244, 25–51 (2010). https://doi.org/10.1007/s00709-010-0156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-010-0156-2

Keywords

Navigation