Skip to main content
Log in

Behavioral Strategies of Mammal Herbivores Against Plant Secondary Metabolites: The Avoidance–Tolerance Continuum

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

We review the evidence for behavioral avoidance of plant secondary metabolites (PSMs) and identify how, and the circumstances under which it occurs. Behavioral strategies of avoidance of PSM can only be fully understood in relation to the underlying physiological processes or constraints. There is considerable evidence that animals learn to avoid PSMs on the basis of negative postingestive effects. The extent to which this process determines foraging choices is limited by the ability of animals to experience the consequences of their behaviors and associate particular cues in foods with their specific effects in the body. The proposed learning mechanisms require that animals must at least “sample” plants that contain PSMs. They do not completely avoid PSMs, but there is evidence that they restrict their ingestion to within limits that they are physiologically able to tolerate, and that the amounts of PSM ingested result from a balance between toxicological considerations and the nutrient content of the plant material. These limits are influenced by the kinetics of PSM elimination, which underlies patterns of bite and patch selection from plant parts to landscapes. We suggest that altering spatial location of feeding (to alternative food patches or alternative foods within patches, including plant parts), and temporal distribution of feeding activity, by either cessation of feeding or by continuing to feed, but on alternative foods, can both lead to reduction of the intake and toxic effects of PSMs. We propose that the strategy of avoidance or reduction of intake of PSMs coevolved with the animal's ability to physiologically tolerate their ingestion, and that avoidance and tolerance are inversely related (the avoidance–tolerance continuum). The animals' propensity and ability to seek alternatives also vary with the dispersion of their food resources. Further work is required to test these proposals and integrate temporal and spatial aspects of foraging behavior and its nutritional consequences in relation to PSMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acamovic, T., Stewart, C. S., and Pennycott, T. W. 2004. Poisonous Plants and Related Toxicants. CABI, Wallingford.

    Google Scholar 

  • Appel, H. M. 1993. Phenolics in ecological interactions: The importance of oxidation. J. Chem. Ecol. 19:1521–1552.

    Article  CAS  Google Scholar 

  • Athanasiadou, S. and Kyriazakis, I. 2004. Plant secondary metabolites: Antiparasitic effects and their role in ruminant production systems. Proc. Nutr. Soc. 63:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Babich, H. and Davis, D. L. 1981. Phenol: A review of environmental and health risks. Regul. Toxicol. Pharmacol. 1:90–109.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, D. W., Gross, J. E., Laca, E. A., Rittenhouse, L. R., Coughenour, M. B., Swift, D. M., and Sims, P. L. 1996. Mechanisms that result in large herbivore grazing distribution patterns. J. Range Manag. 49:386–400.

    Article  Google Scholar 

  • Barber, W. D. and Burks, T. F. 1987. Brain–gut interactions: brain stem neuronal response to local gastric effects of substance P. Am. J. Physiol. 253:G369–G377.

    PubMed  CAS  Google Scholar 

  • Barry, T. N. and Manley, T. R. 1984. The role of condensed tannins in the nutritional-value of lotus-pedunculatus for sheep. 2. Quantitative digestion of carbohydrates and proteins. Br. J. Nutr. 51:493–504.

    Article  PubMed  CAS  Google Scholar 

  • Barry, T. N., Manley, T. R., and Duncan, S. J. 1986. The role of condensed tannins in the nutritional value of Lotus pedunculatus for sheep. 4. Sites of carbohydrate and protein digestion as influenced by dietary reactive tannin concentration. Br. J. Nutr. 55:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Barry, T. N., Hoskin, S. O., and Wilson, P. R. 2002. Novel forages for growth and health in farmed deer. N. Z. Vet. J. 50:244–251.

    PubMed  CAS  Google Scholar 

  • Barton, R. A. and Whiten, A. 1994. Reducing complex diets to simple rules: Food selection by olive baboons. Behav. Ecol. Sociobiol. 35:283–293.

    Article  Google Scholar 

  • Bate-Smith, E. C. and Metcalf, C. R. 1957. Leucoanthocyanins. 3. The nature and systematic distribution of tannins in dicotyledonous plants. J. Linnean Soc. (Bot.) 55:669–705.

    Article  Google Scholar 

  • Bergeron, J. M. and Jodoin, L. 1987. Defining ‘high quality’ food resources of herbivores: The case for meadow voles (Microtus pennsylvanicus). Oecologia 71:510–517.

    Article  Google Scholar 

  • Boyle, R. R. and McLean, S. 2004. Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 30:757–775.

    Article  PubMed  CAS  Google Scholar 

  • Brattsten, L. B., Wilkinson, C. F., and Eisner, T. 1977. Herbivore–plant interactions: Mixed-function oxidases and secondary plant substances. Science 196:1349–1352.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, J. P. and Kuropat, P. 1980. Selection of winter forage by subarctic browsing vertebrates: The role of plant chemistry. Annu. Rev. Ecol. Syst. 11:261–285.

    Article  CAS  Google Scholar 

  • Bryant, J. P., Wieland, G. D., Reichardt, P. B., Lewis, V. E., and McCarthy, M. C. 1983. Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science 222:1023–1025.

    Article  PubMed  CAS  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 1989. Food aversion learning: Ability of lambs to distinguish safe from harmful foods. J. Anim. Sci. 67:1732–1739.

    PubMed  CAS  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 1991. Ability of lambs to learn with a delay between food ingestion and consequences given meals containing novel and familiar foods. Appl. Anim. Behav. Sci. 32:179–189.

    Article  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 1996. Amount of experience and prior illness affect the acquisition and persistence of conditioned food aversions in lambs. Appl. Anim. Behav. Sci. 48:73–80.

    Article  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 1997. Effect of an unfamiliar location on the consumption of novel and familiar foods by sheep. Appl. Anim. Behav. Sci. 54:317–325.

    Article  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 2000. Role of toxins in intake of varied diets by sheep. J. Chem. Ecol. 26:1991–2005.

    Article  CAS  Google Scholar 

  • Cheeke, P. R. 1988. Toxicity and metabolism of pyrrolizidine alkaloids. J. Anim. Sci. 66:2343–2350.

    PubMed  CAS  Google Scholar 

  • Danell, K., Gref, R., and Yazdani, R. 1990. Effects of mono- and diterpenes in scots pine needles on moose browsing. Scand. J. For. Res. 5:535–539.

    Article  Google Scholar 

  • Danell, K., Edenius, L., and Lundberg, P. 1991. Herbivory and tree stand composition: Moose patch use in winter. Ecology 72:1350–1357.

    Article  Google Scholar 

  • Dearing, M. D. 1997. The manipulation of plant toxins by a food-hoarding herbivore, Ochotona princeps. Ecology 78:774–781.

    Article  Google Scholar 

  • Dearing, M. D. and Cork, S. J. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J. Chem. Ecol. 25:1205–1219.

    Article  CAS  Google Scholar 

  • Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2001. Plant secondary compounds as diuretics: An overlooked consequence. Am. Zool. 41:890–901.

    Article  CAS  Google Scholar 

  • Duncan, A. J. and Young, S. A. 2002. Can goats learn about foods through conditioned food aversions and preferences when multiple food options are simultaneously available? J. Anim. Sci. 80:2091–2098.

    PubMed  CAS  Google Scholar 

  • Duncan, A. J., Hartley, S. E., and Iason, G. R. 1994. The effect of monoterpene concentrations in Sitka spruce (Picea sitchensis) on the browsing behavior of red deer (Cervus elaphus). Can. J. Zool. 72:1715–1720.

    Article  CAS  Google Scholar 

  • Duncan, P., Tixier, H, Hofman, R. R., and Lechner-Doll, M. 1998. Feeding strategies and the physiology of digestion in roe deer, pp. 91–116, in R. Andersen, P. Duncan, and J. D. C. Linnell (eds.). The European Roe Deer: The Biology of Success. Scandinavia University Press, Oslo.

    Google Scholar 

  • Dutoit, J. T., Provenza, F. D., and Nastis, A. 1991. Conditioned taste-aversions—how sick must a ruminant get before it learns about toxicity in foods. Appl. Anim. Behav. Sci. 30:35–46.

    Article  Google Scholar 

  • Dziba, L. E., Hall, J. O., and Provenza, F. D. 2006. Feeding behavior of lambs in relation to kinetics of 1,8-cineole dosed intravenously and into the rumen. J. Chem. Ecol., in press.

  • Elliott, S. and Loudon, A. 1987. Effects of monoterpene odours on food selection by red deer calves. J. Chem. Ecol. 13:1343–1349.

    Article  CAS  Google Scholar 

  • Epple, G., Niblick, H., Lewis, S., Nolte, D. L., Campbell, D. L., and Mason, J. R. 1996. Pine needle oil causes avoidance behaviors in pocket gopher Geomys bursarius. J. Chem. Ecol. 22:1013–1025.

    Article  CAS  Google Scholar 

  • Feeney, P. P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.

    Google Scholar 

  • Feeney, P. 1991. The evolution of chemical ecology: Contributions from the study of herbivorous insects, pp. 1–44, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interaction With Plant Secondary Metabolites. Academic Press, San Diego.

    Google Scholar 

  • Fenwick, G. R. 1989. Bracken (Pteridium aquilinum)—toxic effects and toxic constituents. J. Sci. Food Agric. 46:147–173.

    Article  CAS  Google Scholar 

  • Foley, W. J., McLean, S., and Cork, S. J. 1995. Consequences of biotransformation of plant secondary metabolites on acid–base metabolism in mammals—A final common pathway. J. Chem. Ecol. 21:721–743.

    Article  CAS  Google Scholar 

  • Foley, W. J., Iason, G. R., and McArthur, C. 1999. The role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: How far have we come in 25 years? pp. 130–209, in H.-J. Jung and G. C. Fahey (eds.). Nutritional Ecology of Herbivores. American Society of Animal Science, Savoy, IL.

    Google Scholar 

  • Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: The role of the plant secondary compounds. Am. Nat. 108:269–289.

    Article  CAS  Google Scholar 

  • Freeland, W. J. and Winter, J. W. 1975. Evolutionary consequences of eating: Trichosurus vulpecula (Marsupialia) and the genus Eucalyptus. J. Chem. Ecol. 1:439–455.

    Article  Google Scholar 

  • Freeland, W. J., Calcott, P. H., and Anderson, L. R. 1985. Tannins and saponin: Interaction in herbivore diets. Biochem. Syst. Ecol. 13:189–193.

    Article  CAS  Google Scholar 

  • Garcia, J. 1989. Food for Tolman: Cognition and cathexis in concert, pp. 45–85, in T. Archer and L. Nilsson (eds.). Aversion, Avoidance and Anxiety. Earlbaum, Hillsdale, NJ.

    Google Scholar 

  • Garcia, J. and Kimeldorf, D. J. 1957. Temporal relationships within the conditioning of a saccharin aversion through radiation exposure. J. Comp. Physiol. Psychol. 50:589–597.

    Article  Google Scholar 

  • Garland, T. and Barr, A. C. 1998. Toxic Plants and Other Natural Toxicants. CAB International, Wallingford.

    Google Scholar 

  • Gauthier, G. and Hughes, R. J. 1995. The palatability of arctic willow for greater snow geese—the role of nutrients and deterring factors. Oecologia 103:390–392.

    Article  Google Scholar 

  • Ginane, C., Duncan, A. J., Young, S. A., Elston, D. A., and Gordon, I. J. 2005. Herbivore diet selection in response to simulated variation in nutrient rewards and plant secondary compounds. Anim. Behav. 69:541–550.

    Article  Google Scholar 

  • Gowda, J. H. 1996. Spines of Acacia tortilis: What do they defend and how? Oikos 77:279–284.

    Article  Google Scholar 

  • Gross, J. E., Shipley, L. A., Hobbs, N. T., Spalinger, D. E., and Wunder, B. A. 1993. Functional response of herbivores in food-concentrated patches: Tests of a mechanistic model. Ecology 74:778–791.

    Article  Google Scholar 

  • Guengerich, F. P. 1997. Comparisons of catalytic selectivity of cytochrome P450 subfamily enzymes from different species. Chem.–Biol. Interact. 106:161–182.

    Article  PubMed  CAS  Google Scholar 

  • Hjältén, J. and Palo, R. T. 1992. Selection of deciduous trees by free ranging voles and hares in relation to plant chemistry. Oikos 63:477–484.

    Article  Google Scholar 

  • Hodgson, J. 1979. Nomenclature and definitions in grazing studies. Grass Forage Sci. 34:11–18.

    Article  Google Scholar 

  • Hofmann, R. R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants—a comparative view of their digestive-system. Oecologia 78:443–457.

    Article  Google Scholar 

  • Houston, D. C., Gilardi, J. D., and Hall, A. J. 2001. Soil consumption by elephants might help to minimize the toxic effects of plant secondary compounds in forest browse. Mamm. Rev. 31:249–254.

    Article  Google Scholar 

  • Hulbert, I. A. R., Iason, G. R., Elston, D. A., and Racey, P. A. 1996. Home-range sizes in a stratified upland landscape of two lagomorphs with different feeding strategies. J. Appl. Ecol. 33:1479–1488.

    Article  Google Scholar 

  • Iason, G. 2005. The role of plant secondary metabolites in mammalian herbivory. Proc. Nutr. Soc. 64:123–131.

    Article  PubMed  CAS  Google Scholar 

  • Iason, G. R. and Murray, A. H. 1996. The energy costs of ingestion of naturally occurring nontannin plant phenolics by sheep. Physiol. Zool. 69:532–546.

    CAS  Google Scholar 

  • Iason, G. R. and Palo, R. T. 1991. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares. J. Chem. Ecol. 17:1733–1743.

    Article  CAS  Google Scholar 

  • Iason, G. R. and Van Wieren, S. E. 1999. Digestive and ingestive adaptations of mammalian herbivores to low quality forage, pp. 337–369, in H. Olff, V. K. Brown, and R. H. Drent (eds.). Herbivores: Between Plants and Herbivores. 38th Symposium of the British Ecological Society. Blackwell, Oxford.

    Google Scholar 

  • Iason, G. R., Duncan, A. J., Hartley, S. E., and Staines, B. W. 1996. Feeding behavior of red deer (Cervus elaphus) on Sitka spruce (Picea sitchensis): The role of carbon–nutrient balance. For. Ecol. Manag. 88:121–129.

    Article  Google Scholar 

  • Janzen, D. H. 1978. Complications in interpreting the chemical defenses of trees against tropical arboreal plant-eating vertebrates, pp. 73–84, in G. Montgomery (ed.). The Ecology of Arboreal Folivores. Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Jogia, M. K., Sinclair, A. R. E., and Andersen, R. J. 1989. An antifeedant in balsam poplar inhibits browsing by snowshoe hares. Oecologia 79:192.

    Article  Google Scholar 

  • Jung, H.-J. G., Batzli, G. O., and Seigler, D. S. 1979. Patterns in the phytochemistry of arctic plants. Biochem. Syst. Ecol. 7:203–209.

    Article  CAS  Google Scholar 

  • Kimball, B. A., Provenza, F. D., and Burritt, E. A. 2002. Importance of alternative foods on the persistence of flavor aversions: Implications for applied flavor avoidance learning. Appl. Anim. Behav. Sci. 76:249–258.

    Article  Google Scholar 

  • Kumar, R. 1992. Prosopis cineraria leaf tannins: Their inhibitory effect upon ruminal cellulase and the recovery of inhibition by polyethylene glycol-4000, pp. 699–704, in R. W. Hemmingway and P. E. Laks (eds.). Plant Polyphenols: Synthesis, Properties, Significance. Plenum, New York.

    Google Scholar 

  • Kyriazakis, I., Papachristou, T. G., Duncan, A. J., and Gordon, I. J. 1997. Mild conditioned food aversions developed by sheep associated with plant secondary compounds. J. Chem. Ecol. 23:727–746.

    Article  CAS  Google Scholar 

  • Kyriazakis, I., Anderson, D. H., and Duncan, A. J. 1998. Conditioned flavour aversions in sheep:the relationship between the dose-rate of a secondary plant compound and the acquisition and persistence of aversions. Br. J. Nutr. 79:55–62.

    Article  PubMed  CAS  Google Scholar 

  • Launchbaugh, K. L. and Provenza, F. D. 1993. Can plants practise mimicry to avoid grazing by mammalian herbivores? Oikos 66:501–504.

    Article  Google Scholar 

  • Lawler, I. R., Foley, W. J., and Eschler, B. M. 2000. Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338.

    Article  Google Scholar 

  • Marley, C. L., Cook, R., Barrett, J., Keatlinge, R., Lampkin, N. H., and McBride, S. D. 2003. The effect of dietary forage on the development and survival of helminth parasites in ovine faeces. Vet. Parasitol. 118:93–107.

    Article  PubMed  CAS  Google Scholar 

  • Marquis, R. J. and Batzli, G. O. 1989. Influence of chemical factors on palatability of forage to voles. J. Mammal. 70:503–511.

    Article  Google Scholar 

  • Marsh, K. J., Wallis, I. R., and Foley, W. J. 2006. Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology 86:2946–2954.

    Article  Google Scholar 

  • McArthur, C., Hagerman, A., and Robbins, C. T. 1991. Physiological strategies of mammalian herbivores against plant defenses, pp. 103–114, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Bocan Raton, FL.

    Google Scholar 

  • McArthur, C., Robbins, C. T., Hagerman, A. E., and Hanley, T. A. 1993. Diet selection by a ruminant generalist browser in relation to plant chemistry. Can. J. Zool. 71:2236–2243.

    Article  CAS  Google Scholar 

  • McLean, S. and Duncan, A. J. 2006. Pharmacological perspectives on the detoxification of plant secondary metabolites: Implications for the ingestive behavior of herbivores. J. Chem. Ecol., this issue.

  • Mehansho, H., Butler, L. G., and Carlson, D. M. 1987. Dietary tannins and salivary proline-rich proteins—interactions, induction, and defence-mechanisms. Annu. Rev. Nutr. 7:423–440.

    Article  PubMed  CAS  Google Scholar 

  • Molyneux, R. J. and Ralphs, M. H. 1992. Plant toxins and palatability to herbivores. J. Range Manag. 45:13–18.

    Article  Google Scholar 

  • Moore, B. D. and Foley, W. J. 2005. Tree use by koalas in a chemically complex landscape. Nature 435:488–490.

    Article  PubMed  CAS  Google Scholar 

  • Palo, R. T. and Robbins, C. T. 1991. Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton.

    Google Scholar 

  • Palo, R. T., Bergström, R., and Danell, K. 1992. Digestibility, distribution of pehnols, and fibre at different twig diameters of birch in winter. Implication for browsers. Oikos 65:450–454.

    Article  Google Scholar 

  • Pass, G. J. and Foley, W. J. 2000. Plant secondary metabolites as mammalian feeding deterrents: Separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol., B. Biochem. Syst. Environ. Physiol. 170:185–192.

    Article  CAS  Google Scholar 

  • Pass, G. J., McLean, S., Stupans, I., and Davies, N. 2001. Microsomal metabolism of the terpene 1,8-cineole in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctos cinereus), rat and human. Xenobiotica 31:205–221.

    Article  PubMed  CAS  Google Scholar 

  • Pehrson, A. 1983. Digestibility and retention of food components in caged mountain hares Lepus timidus during the winter. Holarct. Ecol. 6:395–403.

    Google Scholar 

  • Perez-Barberia, F. J. and Gordon, I. J. 2001. Relationships between oral morphology and feeding style in the Ungulata: A phylogenetically controlled evaluation. Proc. R. Soc. Lond. B 268:1023–1032.

    Article  CAS  Google Scholar 

  • Pfister, J. A., Provenza, F. D., Manners, G. D., Gardner, D. R., and Ralphs, M. H. 1997. Tall larkspur ingestion: Can cattle regulate intake below toxic levels? J. Chem. Ecol. 23:759–777.

    Article  CAS  Google Scholar 

  • Provenza, F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48:2–17.

    Article  Google Scholar 

  • Provenza, F. D. 1996. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010–2020.

    PubMed  CAS  Google Scholar 

  • Provenza, F. D., Burritt, E. A., Clausen, T. P., Bryant, J. P., Reichardt, P. B., and Distel, R. A. 1990. Conditioned flavor aversion: A mechanism for goats to avoid condensed tannins in blackbrush. Am. Nat. 136:810–828.

    Article  Google Scholar 

  • Provenza, F. D., Nolan, J. V., and Lynch, J. J. 1993. Temporal contiguity between food ingestion and toxicosis affects the acquisition of food aversions in sheep. Appl. Anim. Behav. Sci. 38:269–281.

    Article  Google Scholar 

  • Provenza, F. D., Lynch, J. J., and Nolan, J. V. 1994. Food aversion conditioned in anesthetized sheep. Physiol. Behav. 55:429–432.

    Article  PubMed  CAS  Google Scholar 

  • Provenza, F. D., Burritt, E. A., Perevolotsky, A., and Silanikove, N. 2000. Self-regulation of intake of polyethylene glycol by sheep fed diets varying in tannin concentrations. J. Anim. Sci. 78:1206–1212.

    PubMed  CAS  Google Scholar 

  • Ralphs, M. H. 1997. Persistence of aversions to larkspur in naive and native cattle. J. Range Manag. 50:367–370.

    Article  Google Scholar 

  • Rangen, S. A., Hawley, A. W. L., and Hudson, R. J. 1994. Relationship of snowshoe hare feeding preferences to nutrient and tannin content of 4 conifers. Can. J. For. Res. 24:240–245.

    Article  Google Scholar 

  • Reichardt, P. B., Bryant, J. P., Clausen, T. P., and Wieland, G. D. 1984. Defense of winter-dormant Alaska paper birch against snowshoe hares. Oecologia 65:58–69.

    Article  Google Scholar 

  • Reichardt, P., Bryant, J. P., Mattes, B. R., Clausen, T. P., Chaplin, F. S. I., and Meyer, M. 1990. Winter chemical defence of Alaskan balsam poplar against Snowshoe Hares. J. Chem. Ecol. 16:1941–1959.

    Article  CAS  Google Scholar 

  • Rhoades, D. F. and Cates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry, pp. 168–213, in J. W. Wallace and R. L. Mansell (eds.). Biochemical Interactions Between Plants and Insects. Plenum, New York.

    Google Scholar 

  • Ricardo, J. A. and Koh, E. T. 1978. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153:1–26.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, C. T., Mole, S., Hagerman, A. E., and Hanley, T. A. 1987. Role of tannins in defending plants against ruminants: Reduction in dry-matter digestion. Ecology 68:1606–1615.

    Article  CAS  Google Scholar 

  • Rodgers, A. R. and Sinclair, A. R. E. 1997. Diet choice and nutrition of captive snowshoe hares (Lepus americanus): Interactions of energy, protein, and plant secondary compounds. Ecoscience 4:163–169.

    Google Scholar 

  • Rosenthal, G. A., and Berenbaum, M. R. 1991. Herbivores—their interactions with plant secondary metabolites. Vol. II. Ecological and Evolutionary Processes, 2nd edn. Academic Press, San Diego.

    Google Scholar 

  • Roy, J. and Bergeron, J. M. 1990. Branch-cutting behavior by the vole (Microtus pennsylvanicus). A mechanism to decrease toxicity of secondary metabolites in conifers. J. Chem. Ecol. 16:735–741.

    Article  CAS  Google Scholar 

  • Scheline, R. R. 1991. Handbook of Mammalian Metabolism of Plant Compounds. CRC Press, Boca Raton.

    Google Scholar 

  • Scott, T. R. 1990. The effect of physiological need on taste, pp. 45–61, in E. D. Capaldi and T. L. Powley (eds.). Taste, Experience, and Feeding. American Psychological Association, Washington, DC.

    Chapter  Google Scholar 

  • Scrivener, N. J., Johnson, C. N., Wallis, I. R., Takasaki, M., Foley, W. J., and Krockenberger, A. K. 2004. Which trees do wild common brushtail possums (Trichosurus vulpecula) prefer? Problems and solutions in scaling laboratory findings to diet selection in the field. Evol. Ecol. Res. 6:77–87.

    Google Scholar 

  • Shipley, L. A., Illius, A. W., Danell, K., Hobbs, N. T., and Spalinger, D. E. 1999. Predicting bite size selection of mammalian herbivores: A test of a general model of diet optimization. Oikos 84:55–68.

    Article  Google Scholar 

  • Sinclair, A. R. E., Jogia, M. K., and Andersen, R. J. 1988. Camphor from juvenile white spruce as an antifeedant for snowshoe hares. J. Chem. Ecol. 14:1505–1514.

    Article  CAS  Google Scholar 

  • Spalinger, D. E. and Hobbs, N. T. 1992. Mechanisms of foraging in mammalian herbivores—new models of functional-response. Am. Nat. 140:325–348.

    Article  CAS  PubMed  Google Scholar 

  • Stapley, J., Foley, W. J., Cunningham, R., and Eschler, B. 2000. How well can common brushtail possums regulate their intake of Eucalyptus toxins? J. Comp. Physiol., B. Biochem. Syst. Environ. Physiol. 170:211–218.

    Article  CAS  Google Scholar 

  • Tahvanainen, J., Helle, E., Julkunen-Tiitto, R., and Lavola, A. 1985. Phenolic compounds of willow bark as deterrents against feeding by mountain hare. Oecologia 65:319–323.

    Article  Google Scholar 

  • Timbrell, J. A. 1991. Principles of Chemical Toxicology, 2nd edn. Taylor and Francis, London.

    Google Scholar 

  • Tixier, H., Duncan, P., Scehovic, P., Yani, P., Gleizes, M., and Lila, M. 1997. Food selection by European roe deer (Capreolus capreolus): Effects of plant chemistry and consequences for the nutritional value of their diets. J. Zool. 242:229–245.

    Article  Google Scholar 

  • Van Wieren, S. E. 1996. Do large herbivores select a diet that maximizes short-term energy intake rate? For. Ecol. Manag. 88:149–156.

    Article  Google Scholar 

  • Vanleeuwen, P., Jansman, A. J. M., Wiebenga, J., Koninkx, J. F. J. G., and Mouwen, J. M. V. M. 1995. Dietary-effects of faba-bean (Vicia faba L.) tannins on the morphology and function of the small-intestinal mucosa of weaned pigs. Br. J. Nutr. 73:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Verheyden-Tixier, H. and Duncan, P. 2000. Selection for small amounts of hydrolysable tannins by a concentrate selecting mammalian herbivore. J. Chem. Ecol. 26:351–358.

    Article  CAS  Google Scholar 

  • Villalba, J. J. and Provenza, F. D. 2001. Preference for polyethylene glycol by sheep fed a quebracho tannin diet. J. Anim. Sci. 79:2066–2074.

    PubMed  CAS  Google Scholar 

  • Villalba, J. J. and Provenza, F. D. 2002. Polyethylene glycol influences selection of foraging location by sheep consuming quebracho tannin. J. Anim. Sci. 80:1846–1851.

    PubMed  CAS  Google Scholar 

  • Villalba, J. J., Provenza, F. D., and Bryant, J. P. 2002. Consequences of the interaction between nutrients and plant secondary metabolites on herbivore selectivity: Benefits or detriments for plants? Oikos 97:282–292.

    Article  CAS  Google Scholar 

  • Villalba, J. J., Provenza, F. D., and Han, G. D. 2004. Experience influences diet mixing by herbivores: Implications for plant biochemical diversity. Oikos 107:100–109.

    Article  CAS  Google Scholar 

  • Waghorn, G. C. and Shelton, I. D. 1995. Effect of condensed tannins in Lotus-Pedunculatus on the nutritive-value of ryegrass (Lolium-Perenne) fed to sheep. J. Agric. Sci. 125:291–297.

    Article  Google Scholar 

  • Wallis De Vries, M. F., Laca, E. A., and Demment, M. W. 1998. From feeding station to patch: Scaling up food intake measurements in grazing cattle. Appl. Anim. Behav. Sci. 60:301–315.

    Article  Google Scholar 

  • Waterman, P. G., Mbi, C. N., Mckey, D. B., and Gartlan, J. S. 1980. African rainforest vegetation and rumen microbes: Phenolic compounds and nutrients as correlates of digestibility. Oecologia 47:22–33.

    Article  Google Scholar 

  • Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins, N. L., Marsh, K. J., Wallis, I. R., Foley, W. J., and McArthur, C. 2006. Sideroxylonal in Eucalyptus foliage influences foraging behaviour of an arboreal folivore. Oecologia 147:272–276.

    Article  PubMed  Google Scholar 

  • Yearsley, J., Villalba, J. J., Kyriazakis, Speakman, J. R., Tolkamp, B. J., Illius, A. W., Gordon, I. J., and Duncan, A. J. 2006. A theory of associating food types with their post-ingestive consequences. Am. Nat., in press.

  • Zahorik, D. M. and Houpt, K. A. 1981. Species differences in feeding strategies, food hazards, and the ability to learn food aversions, pp. 289–301, in A. C. Kamil, Sargent and T.D (eds.). Foraging Behavior. Garland, New York.

    Google Scholar 

  • Zhu, J., Filippich, L. J., and Alsalami, M. T. 1992. Tannic-acid intoxication in sheep and mice. Res. Vet. Sci. 53:280–292.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank participants at the IMC symposium on Mammal strategies against PSMs for helpful discussion, Alan Duncan and Iain Gordon and two anonymous referees for critical and helpful comments. G.R.I. thanks the Scottish Executive Rural Affairs Dept. and the Royal Society for international travel grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn R. Iason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iason, G.R., Villalba, J.J. Behavioral Strategies of Mammal Herbivores Against Plant Secondary Metabolites: The Avoidance–Tolerance Continuum. J Chem Ecol 32, 1115–1132 (2006). https://doi.org/10.1007/s10886-006-9075-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9075-2

Keywords

Navigation