Skip to main content
Log in

Phenolics in ecological interactions: The importance of oxidation

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The ecological activities of plant phenolics are diverse and highly variable. Although some variation is attributable to differences in concentration, structure, and evolutionary history of association with target organisms, much of it is unexplained, making it difficult to predict when and where phenolics will be active. I suggest that our understanding is limited by a failure to appreciate the importance of oxidative activation and the conditions that influence it. I summarize examples of oxidative activation of phenolics in ecological interactions, and argue that physicochemical conditions of the environment that control phenolic oxidation generate variation in ecological activity. Finally, I suggest that measurements of oxidative conditions can improve our predictions of phenolic activity and that experiments must be designed with conditions appropriate to the biochemical mode of phenolic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, A., Ersek, T., Barna, B., andKiraly, Z. 1990. Role of oxidative stress in plants on the development of necrosis induced by pathogens, pp. 1–18,in B. Matkovics, L. Karmazsin and H. Kalasz (eds.). Radicals, Ions and Tissue Damage. Akademiai Kiado, Budapest.

    Google Scholar 

  • Aiken, G.R., McKnight, D.M., andWershaw, R.L. (eds.) 1985. Humic substances.In Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization. Wiley-Interscience, NewYork.

    Google Scholar 

  • Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants.Physiol. Plant. 77:457–464.

    Google Scholar 

  • Anderson, A.J. 1991. Phytoalexins and plant resistance, pp. 569–594,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Anderson, J.V., Chevone, B.I., andHess, J.L. 1992. Seasonal variation in the antioxidant system of eastern white pine needles.Plant Physiol. 98:501–508.

    Google Scholar 

  • Anderson, N.H., andCargill, A.S. 1986. Nutritional ecology of aquatic detritivorous insects, pp. 903–924,in F. Slansky, Jr. and J.G. Rodriguez (eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons, New York.

    Google Scholar 

  • Appel, H.M. 1993. The herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. IV. CRC Press, Boca Raton, Florida. In press.

    Google Scholar 

  • Appel, H.M., andMartin, M.M. 1990. Gut redox conditions in herbivorous lepidopteran larvae.J. Chem. Ecol. 16:3277–3290.

    Google Scholar 

  • Appel, H.M., andSchultz, J.C. 1992. Activity of phenolics in insects may require oxidation, pp. 609–620,in R.W. Hemingway (ed.). Plant Polyphenols: Biogenesis, Chemical Properties, and Significance. Plenum Press, New York.

    Google Scholar 

  • Austin, P.J., Suchar, L.A., Robbins, C.T., andHagerman, A.E. 1989. Tannin-binding proteins in saliva of deer and their absence in saliva of sheep and cattle.J. Chem. Ecol. 15:1335–1347.

    Google Scholar 

  • Baldwin, I.T., Olson, R.K., andReiners, W.A. 1983. Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils.Soil Biol. Biochem 15:419–424.

    Google Scholar 

  • Barbeau, W.E., andKinsella, J.E. 1985. Effects of free and bound chlorogenic acid on the in vitro digestibility of ribulose bisphosphate carboxylase from spinach.J. Food Sci. 50:1083–1087.

    Google Scholar 

  • Barlocher, F. 1983. Seasonal variation of standing crop and digestibility of CPOM in a Swiss Jura stream.Ecology 64:1266–1272.

    Google Scholar 

  • Barry, T.N., andManley, T.R. 1986. Interrelationships between the concentrations of total condensed tannin, free condensed tannin and lignin inLotus sp. and their possible consequences in ruminant nutrition.J. Sci. Food Agric. 37:248–254.

    Google Scholar 

  • Bartlett, R.J. 1986. Soil redox behavior, pp. 179–207,in D.L. Sparks (ed.). Soil Physical Chemistry. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Bashan, Y., Okon, Y., andHenis, Y. 1987. Peroxidase, polyphenoloxidase, and phenols in relation to resistance againstPseudomonas syringae pv.tomato in tomato plants.Can. J. Bot. 65:366–372.

    Google Scholar 

  • Bassuk, N.L., Hunter, L.D., andHoward, B.H. 1981. The apparent involvement of polyphenol oxidase and phloridzin in the production of apple rooting cofactors.J. Hortic. Sci. 56:313–322.

    Google Scholar 

  • Bate-Smith, E.C. 1977. Astringent tannins ofAcer species.Phytochemistry 16:1421–1426.

    Google Scholar 

  • Bendich, A. 1989. Antioxidant nutrients and immune functions-Introduction, pp. 1–12,in A. Bendich, M. Phillips, and R.P. Tengerdy (eds.). Antioxidant Nutrients and Immune Functions. Plenum Press, New York.

    Google Scholar 

  • Benezra, C. 1988. Plants causing adverse skin reactions, pp. 395–400,in V. Cody, E. Middleton, Jr., J.B. Harborne, and A. Beretz (eds.). Plant Flavonoids in Biology and Medicine II: Bio-chemical, Cellular, and Medicinal Properties. Alan R. Liss, New York.

    Google Scholar 

  • Berenbaum, M. 1984. Effects of tannins on growth and digestion in two species of papilionids.Entomol. Exp. Appl. 34:245–250.

    Google Scholar 

  • Bernays, E.A. 1978. Tannins: An alternative viewpoint.Entomol. Exp. Appl. 34:245–250.

    Google Scholar 

  • Bernays, E.A. 1981. Plant tannins and insect herbivores: An appraisal.Ecol. Entomol. 6:353–360.

    Google Scholar 

  • Bernays, E.A., andChamberlain, D.J. 1980. A study of tolerance of ingested tannin inSchistocerca gregaria.J. Insect Physiol. 26:415–420.

    Google Scholar 

  • Bernays, E.A., Chamberlain, D.J., andMcCarthy, P. 1980. The differential effects of ingested tannic acid on different species of Acridoidea.Entomol. Exp. Appl. 28:158–166.

    Google Scholar 

  • Bernays, E.A., Chamberlain, D.J., andWoodhead, S. 1983. Phenols as nutrient for a phytophagous insectAnacridium melanorhodon.J. Insect Physiol. 29:535–539.

    Google Scholar 

  • Bernays, E.A., Cooper Driver, G., andBilgener, M. 1989. Herbivores and plant tannins.Adv. Ecol. Res. 19:263–302.

    Google Scholar 

  • Blakeman, J.P., andAtkinson, P. 1981. Antimicrobial substances associated with the aerial surfaces of plants, pp. 245–263,in J.P. Blakeman (ed.). Microbial Ecology of the Phylloplane. Academic Press, New York.

    Google Scholar 

  • Bloem, K.A., andDuffey, S.S. 1990. Interactive effect of protein and rutin on larvalHeliothis zea and the endoparasitoidHyposoter exiguae.Entomol. Exp. Appl. 54:149–160.

    Google Scholar 

  • Blum, M.S. 1981. Chemical Defenses of Arthropods. Academic Press, New York.

    Google Scholar 

  • Blum, U., Wentworth, T.R., Klein, K., Worsham, A.D., King, L.D., Gerig, T.M., andLyu, S.W. 1991. Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems.J. Chem. Ecol. 17:1045–1068.

    Google Scholar 

  • Boettcher, A., andTargett, N. 1992. The role of polyphenolic molecular size in the reduction of assimilation efficiency in the herbivorous marine fishXiphister mucosus.Ecology 74:891–903.

    Google Scholar 

  • Bollag, J. 1991. Enzymatic binding of pesticide degradation products to soil organic matter and their possible release, pp. 122–132,in L. Somasundaram and J.R. Coats, (eds.). Pesticide Transformation Products. American Chemical Society Symposium Series No. 459, Washington, D.C.

  • Booth, A.N., Mashi, M.S., Robbins, D.J., Emerson, O.H., Jones, F.T., andDeeds, F. 1959. The metabolic fate of gallic acid and related compounds.J. Biol. Chem. 234:3014–3016.

    Google Scholar 

  • Bourchier, R.S. 1991. Growth and development ofCompsilura concinnata (Meigan) (Diptera: Tachinidae) parasitizing gypsy moth larvae feeding on tannin diets.Can. Entomol. 123:1047–1055.

    Google Scholar 

  • Bryant, J.P., Kuropat, P.J., Reichardt, P.B., andClausen, T.P. 1991. Controls over the allocation of resources by woody plants to chemical antiherbivore defense, pp. 83–102,in R.I. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Byrd, R.J.W., Fielding, A.H., andWilliams, A.H. 1960. The role of oxidized polyphenols in the varietal resistance of apples to brown rot, pp. 95–99,in J.B. Pridham (ed.). Phenolics in Plants in Health and Disease. Pergamon Press, London.

    Google Scholar 

  • Cameron, G.N., andLaPoint, T.W. 1978. Effects of tannins on the decomposition of Chinese tallow leaves by terrestrial and aquatic invertebrates.Oecologia 32:349–366.

    Google Scholar 

  • Cherney, J.H., Cherney, D.J.R., Sollenberger, L.E., Patterson, J.A., andWood, K.V. 1990. Identification of 5-O-caffeoylquinic acid in limpograss and its influence on fiber digestion.J. Sci. Food Agric. 38:2140–2143.

    Google Scholar 

  • Chiou, C.T. 1990. Roles of organic matter, minerals, and moisture in sorption of nonionic compounds and pesticides in soil, pp. 111–160,in P. MacCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom (eds.). Humic Substances in Soil and Crop Sciences: Selected Readings. American Society of Agronomists, Inc. and Soil Science Society of America, Inc., Madison, Wisconsin.

    Google Scholar 

  • Cilliers, J.J.L., Singleton, V.L., andLamuela-Raventos, R.M. 1990. Total polyphenols in apples and ciders; correlation with chlorogenic acid.J. Food Sci. 55:1458–1459.

    Google Scholar 

  • Claus, H., andFilip, Z. 1990. Effects of clays and other solids on the activity of phenoloxidases produced by some fungi and actinomycetes.Soil Biol. Biochem. 22:483–488.

    Google Scholar 

  • Clausen, T.P., Provenza, F.D., Burritt, E.A., Reichardt, P.B., andBryant, J.P. 1990. Ecological implications of condensed tannin structure: a case study.J. Chem. Ecol. 16:2381–2392.

    Google Scholar 

  • Cole, R.A., Phelps, K., Ellis, P.R., andHardman, J.A. 1987. The effects of time of sowing and harvest on carrot biochemistry and the resistance of carrots to carrot fly.Ann. Appl. Biol. 110:135–143.

    Google Scholar 

  • Cole, R.A., Phelps, K., Ellis, P.R., Hardman, J.A., andRollason, S.A. 1988. Further studies relating chlorogenic acid concentration in carrots to carrot fly damage.Ann. Appl. Biol. 112:13–18.

    Google Scholar 

  • Coley, P.D., Bryant, J.P., andChapin, F.S., III. 1985. Resource availability and plant antiherbivore defense.Science 230:895–899.

    Google Scholar 

  • Cooper, S.M., Owen-Smith, N., andBryant, J.P. 1988. Foliage acceptability to browsing ruminants in relation to seasonal changes in the leaf chemistry of woody plants in a South African savanna.Oecologia 75:336–342.

    Google Scholar 

  • Cork, S.J., andFoley, W.J. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defense in temperate and tropical forests, pp. 133–166,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Crowson, R.A. 1981. The Biology of the Coleoptera. Academic Press, New York.

    Google Scholar 

  • Dadd, R.H. 1975. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes.J. Insect Physiol. 21:1847–1853.

    Google Scholar 

  • Dao, T.H. 1987. Sorption and mineralization of plant phenolic acids in soil, pp. 358–370,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. American Chemical Society Symposium Series No. 330, Washington, D.C.

  • Daub, M.E., andHangarter, R.P. 1983. Production of singlet oxygen and Superoxide by the fungal toxin, cercosporin.Plant Physiol. 73:855–857.

    Google Scholar 

  • Davis, S., andBurns, R.G. 1990. Decolorization of phenolic effluents by soluble and immobilized phenol oxidases.Appl. Microbiol. Biotechnol. 32:721–726.

    Google Scholar 

  • Del Grosso, E., Grazia, S., andMaraldi, A.C. 1987. Peroxidase activity inPhaseolus vulgaris seedling tissues and callus cultures: A comparison of genotypes and developmental stages.Environ. Exp. Bot. 27:387–394.

    Google Scholar 

  • Del Moral, R. 1972. On the variability of chlorogenic acid concentration.Oecologia 9:289–300.

    Google Scholar 

  • Dennisov, E., andKhudyakov, I.V. 1987. Mechanisms of action and reactivities of the free radicals of inhibitors.Chem. Rev. 87:1313–1357.

    Google Scholar 

  • De Veau, E.J.I., andSchultz, I.C. 1992. Reassessment of the interaction between gut detergents and phenolics in Lepidoptera and significance for gypsy moth larvae.J. Chem. Ecol. 18:1437–1453.

    Google Scholar 

  • Dix, N.J. 1979. Inhibition of fungi by gallic acid in relation to growth on leaves and litter.Trans. Br. Mycol. Soc. 73:32–336.

    Google Scholar 

  • Doke, N., Miura, T., Chai, H., andKawakita, K. 1991. Involvement of active oxygen in induction of plant defense response against infection and injury, pp. 84–96,in E. Pell and K. Steffen (eds.). Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Penn State University, University Park, Pennsylvania.

    Google Scholar 

  • Driscoll, C.T., Van Breemen, N., andMulder, J. 1985. Aluminum chemistry in a forested spodosol.Soil Sci. Soc. Am. J. 49:437–444.

    Google Scholar 

  • Duffey., S.S., andFelton, G.W. 1989. Plant enzymes in resistance to insects, pp. 166–197,in J.R. Whitaker and P.E. Sonnett (eds.). Biocatalysis in Agricultural Biotechnology. American Chemical Society Symposium Series, Washington, D.C.

  • Duke, J.A., andAtchley, A.A. 1986. Handbook of Proximate Analysis Tables of Higher Plants. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ebbing, D.D. 1987. General Chemistry. Houghton-Mifflin, New York.

    Google Scholar 

  • Einhellig, F.A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171–186,in A.R. Putnam and C. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • Einhellig, F.A., andSouza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates.J. Chem. Ecol. 18:1–11.

    Google Scholar 

  • Elliger, C.A., Chan, B.C., andWaiss, A.C. 1981. Flavonoids as larval growth inhibitors: Structural factors governing toxicity.Naturwissenschaften 67:358–360.

    Google Scholar 

  • Elstner, E.F., Konze, J.R., Selman, B.R., andStoffer, C. 1976. Ethylene formation in sugar beet leaves.Plant Physiol. 58:163–168.

    Google Scholar 

  • Evans, D.H. 1978. Carbonyl compounds, pp. 3–259,in A.J. Bard, (ed.). Encyclopedia of Electrochemistry of the Elements, Vol. 12. Marcel Dekker, New York.

    Google Scholar 

  • Fate, G., Chang, M., andLynn, D.G. 1990. Control of germination inStriga asiatica: Chemistry of spatial definition.Plant Physiol. 93:201–207.

    Google Scholar 

  • Feeny, P. 1968. Effect of oak leaf tannins on larval growth of the winter mothOperophtera brumata.J. Insect Physiol. 14:805–817.

    Google Scholar 

  • Feeny, P. 1969. Inhibitory effect of oak leaf tannins on the hydrolysis of proteins by trypsin.Phytochemistry 8:2119–2126.

    Google Scholar 

  • Feeny, P. 1970. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars.Ecology 51:565–581.

    Google Scholar 

  • Feeny, P. 1976. Plant apparancy and chemical defence, pp. 1–40,in J.W. Wallace and R.L. Mansell (eds.). Biochemical Interactions Between Plants and Insects. Plenum Press, New York.

    Google Scholar 

  • Felton, G.W., andDuffey, S.S. 1990. Inactivation of baculovirus by quinones formed in insect-damaged plant tissues.J. Chem. Ecol. 16:1221–1236.

    Google Scholar 

  • Felton, G.W., andDuffey, S.S. 1991a. Enzymatic antinutritive defenses of the tomato plant against insects, pp. 166–197,in P. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symposium Series 449, Washington, D.C.

  • Felton, G.W., andDuffey, S.S. 1991b. Reassessment of the role of gut alkalinity and detergency in insect herbivory.J. Chem. Ecol. 17:1821–1836.

    Google Scholar 

  • Felton, G.W., andDuffey, S.S. 1992. Ascorbate oxidation reduction inHelicoverpa zea as a scavenging system against dietary oxidants.Arch. Insect Biochem. Physiol. 19:27–37.

    Google Scholar 

  • Felton, G.W., Duffey, S.S., Vail, P.V., Kaya, H.K., andManning, J. 1987. Interaction of nuclear polyhedrosis virus with catechols: potential incompatibility for host-plant resistance against noctuid larvae.J. Chem. Ecol. 13:947–957.

    Google Scholar 

  • Felton, G.W., Donato, K., Del Vecchio, R.J., andDuffey, S.S. 1989. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivores.J. Chem. Ecol. 12:2667–2694.

    Google Scholar 

  • Flaig, W. 1988. Generation of model chemical precursors, pp. 75–92,in F.H. Frimmel and R.F. Christman (eds.). Humic Substances and Their Role in the Environment. Wiley, Chichester.

    Google Scholar 

  • Fox, R.H., Meyers, R.J.K., andValus, I. 1990. The nitrogen mineralization rate of legume residues in soil as influenced by their polyphenol, ligin, and nitrogen contents.Plant Soil 129:251–259.

    Google Scholar 

  • Freda, J., Cavdek, J., andMcDonald, D.G. 1990. Role of organic complexation in the toxicity of aluminum toRana pipiens embryos andBufo americanus tadpoles.Can. J. Fish. Aquat. Sci. 47:217–224.

    Google Scholar 

  • Friend, J. 1979. Phenolic substances and plant disease, pp. 557–588,in T. Swain, J.B. Harborne, and C.F. Van Sumere (eds.). Biochemistry of Plant Phenolics. Plenum Press, New York.

    Google Scholar 

  • Friend, J. 1981. Plant phenolics, lignification and plant disease.Prog. Phytochem. 7:197–261.

    Google Scholar 

  • Fujita, S., andTono, T. 1988. Purification and some properties of polyphenoloxidase in eggplant (Solanum melongena).J. Sci. Food Agric. 46:115–123.

    Google Scholar 

  • Gentile, I.A., Ferraris, L., andMatta, A. 1988. Variations of phenoloxidase activities as a consequence of stresses that induce resistance toFusarium wilt of tomato.J. Phytopathol. 122:45–53.

    Google Scholar 

  • Gillman, G.P. 1985. Influence of organic matter and phosphate content on the point of zero charge of variable charge components in oxidic soils.Aust. J. Soil Res. 23:643–646.

    Google Scholar 

  • Graham, M.Y., andGraham, T.L. 1991. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment withPhytophthora megasperma f. sp.Glycinea wall glucan.Plant Physiol. 97:1445–1455.

    Google Scholar 

  • Griffiths, D.W., Bain, H., andDale, M.F.B. 1992. Development of a rapid colorimetric method for the determination of chlorogenic acid in freeze-fried potato tubers.J. Sci. Food Agric. 58:41–48.

    Google Scholar 

  • Hagerman, A.E., andButler, L.G. 1991. Tannins and lignins, pp. 355–388,in G.A. Rosenthaland M.R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.

    Google Scholar 

  • Halliwell, B., andGutteridge, J.M.C. (eds.) 1989. Free Radicals in Biology and Medicine, 2nd ed. Oxford University Press, New York.

    Google Scholar 

  • Harborne, J.B. 1988. Flavonoids in the environment: structure-activity relationships, pp. 17–27,in V. Cody, E. Middleton, Jr., J.B. Harborne, and A. Beretz (eds.). Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular, and Medicinal Properties. Alan R. Liss, NewYork.

    Google Scholar 

  • Harborne, J.B. 1991a. Flavonoid pigments, pp. 389–429,in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.

    Google Scholar 

  • Harborne, J.B. 1991b. The chemical basis of plant defense, pp. 45–59,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Harrison, A.F. 1971. The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition.Soil Biol. Biochem. 3:167–172.

    Google Scholar 

  • Hartenstein, R. 1982. Soil macroinvertebrates, aldehyde oxidase, catalase, cellulase and peroxidase.Soil Biol. Biochem. 4:387–391.

    Google Scholar 

  • Haslam, E. 1989. Plant polyphenols: Vegetable tannins revisited. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Hay, M.E., andFenical, W. 1988. Marine plant-herbivore interactions: The ecology of chemical defense.Annu. Rev. Ecol. Syst. 19:111–145.

    Google Scholar 

  • Hayes, M.H.B, (ed.) 1989. Humic Substances II, in Search of Structure. John Wiley & Sons, New York.

    Google Scholar 

  • Heal, O.W., andDighton, J. 1986. Nutrient cycling and decomposition in natural terrestrial ecosystems, pp. 14–73,in Microfloral and Faunal Interactions in Natural and Agro-ecosystems. Martinus Nijhoff/Dr. W. Junk, Dordrecht.

    Google Scholar 

  • Hofmann, R.R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system.Oecologia 78:443–457.

    Google Scholar 

  • Horn, M.H. 1989. Biology of marine herbivorous fishes.Oceanogr. Mar. Biol. Annu. Rev. 27:167–272.

    Google Scholar 

  • Hue, N.V., Craddock, G.R., andAdams, F. 1986. Effect of organic acids on aluminum toxicity in subsoils.Soil Sci. Soc. Am. J. 50:28–34.

    Google Scholar 

  • Iason, G.R., andPalo, R.T. 1991. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares.J. Chem. Ecol. 17:1733–1743.

    Google Scholar 

  • Illman, B.L. 1991. Oxidative degradation of wood by brown-rot fungi, pp. 97–106,in E. Pell and K. Steffen (eds.). Active Oxygen/Oxidative Stress and Plant Metabolism. American Society of Plant Physiology, Penn State University, University Park, Pennsylvania.

    Google Scholar 

  • Isman, M.B., andDuffey, S.S. 1982. Toxicity of tomato phenolic compounds to the fruitworm,Heliothis zea.Entomol. Exp. Appl. 31:370–376.

    Google Scholar 

  • Jakubas, W.J., andGullion, G.W. 1990. Coniferyl benzoate in quaking aspen. A ruffed grouse feeding deterrent.J. Chem. Ecol. 16:1077–1087.

    Google Scholar 

  • Jakubas, W.J., Gullion, G.W., andClausen, T.P. 1989. Ruffed grouse feeding behavior and its relationship to secondary metabolites of quaking aspen flower buds.J. Chem. Ecol. 15:1899–1917.

    Google Scholar 

  • Janovitz-Klapp, A., Richard, F., andNicolas, J. 1989. Polyphenoloxidase from apple, partial purification and some properties.Phytochemistry 28:2903–2907.

    Google Scholar 

  • Jones, C.G., Hess, T.A., Whitman, D.W., Silk, P.J., andBlum, M.S. 1986. Idiosyncratic variation in chemical defenses among individual generalist grasshoppers.J. Chem. Ecol. 12:749–761.

    Google Scholar 

  • Jones, K.C., andKlocke, J.A. 1987. Aphid feeding deterrency of ellagitannins, their phenolic hydrolysis products and related phenolic derivatives.Entomol. Exp. Appl. 44:229–232.

    Google Scholar 

  • Kafkafi, U., Bar-Yosef, B., Rosenberg, R., andSposito, G. 1988. Phosphorous adsorption by kaolinite and montmorillonite: II. Organic anion competition.Soil. Sci. Soc. Am. J. 52:1585–1589.

    Google Scholar 

  • Kalish, R.S., andJohnson, K.L. 1990. Enrichment and function of urushiol (poison ivy) -specific T lymphocytes in lesions of allergic contact dermatitis to urushiol.J. Immunol. 145:3706–3713.

    Google Scholar 

  • Kalisz, P.J., andStone, E.L. 1980. Cation exchange capacity of acid forest humus layers.Soil Sci. Soc. Am. J. 44:407–413.

    Google Scholar 

  • Karowe, D.N. 1989. Differential effect of tannic acid on two tree-feeding Lepidoptera: Implications for theories of plant anti-herbivory chemistry.Oecologia 80:507–512.

    Google Scholar 

  • Keating, S.T., Yendol, W.G., andSchultz, J.C. 1988. Relationship between susceptibility of gypsy moth larvae (Lepidoptera: Lymantriidae) to a baculovirus and host plant foliage constituents.Environ. Entomol. 17:952–958.

    Google Scholar 

  • Koike, S., andPatterson, B.D. 1988. Diurnal variation of glutathione levels in tomato seedlings.Hortic. Sci. 23:713–714.

    Google Scholar 

  • Kojima, M., andConn, E.E. 1982. Tissue distributions of chlorogenic acid and of enzymes involved in its metabolism in leaves ofSorghum bicolor.Plant Physiol. 70:922–925.

    Google Scholar 

  • Kosuge, T. 1969. The role of phenolics in host response to infection.Annu. Rev. Phytopathol. 7:195–222.

    Google Scholar 

  • Kukor, J.J., andMartin, M.M. 1986. The effect of acquired enzymes on assimilation efficiency in the common woodlouseTracheoniscus rathkei.Oecologia (Berlin) 69:360–366.

    Google Scholar 

  • Kumar, A., Jadhav, S.J., andSalunkhe, D.K. 1991.Solarium phytoalexins, pp. 511–558,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kuiters, A.T., andSarink, H.M. 1986. Leaching of phenolic compounds from leaf and needle litter of several deciduous and coniferous trees.Soil Biol. Biochem. 18:475–480.

    Google Scholar 

  • Lacey, L.A., andFederici, B.A. 1979. Pathogenesis and midgut histopathology ofBacillus thuringiensis inSimulium vitattum (Diptera: Simulidae).J. Invert. Pathol. 33:171–182.

    Google Scholar 

  • Lanker, T., King, T.G., Arnold, S.W., andFlurkey, W.H. 1987. Active, inactive and in vitro synthesized forms of polyphenoloxidase during leaf development.Physiol. Plant. 69:323–329.

    Google Scholar 

  • Larson, R.A. 1988. The antioxidants of higher plants.Phytochemistry 27:969–978.

    Google Scholar 

  • Lee, C.Y., Kagan, V., Jaworski, A.W., andBrown, S.K. 1990. Enzymatic browning in relation to phenolic compounds and polyphenoloxidase activity among various peach cultivars.J. Sci. Food Agric. 38:99–101.

    Google Scholar 

  • Lee, K. 1991. Glutathione S-transferase activities in phytophagous insects: Induction and inhibition by plant phototoxins and phenols.Insect Biochem. 21:353–361.

    Google Scholar 

  • Lee, K.E. 1985. Earthworms: Their Ecology and Relationships with Soils and Land Use. Academic Press, Sydney.

    Google Scholar 

  • Lindroth, R.L. 1991. Differential toxicity of plant allelochemicals to insects: roles of enzymatic detoxification systems, pp. 2–33,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. III. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Lindroth, R.L., Scriber, J.M., andHsai, M.T.S. 1988. Chemical ecology of the tiger swallowtail: Mediation of host use by phenolic glycosides.Ecology 69:814–822.

    Google Scholar 

  • Lindroth, R.L., Kinney, K.K., andPlatz, C.L. 1992. Responses of forest trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance.Ecology. 74:163–777.

    Google Scholar 

  • Lodge, D.M. 1991. Herbivory on freshwater macrophytes.Aquat. Bot. 41:195–224.

    Google Scholar 

  • Lopez-Hernandez, D., Flores, D., Siegert, G., andRodriguez, J.V. 1979. The effect of some organic anions on phosphate removal from acid and calcareous soils.Soil Sci. 128:321–326.

    Google Scholar 

  • Ludlum, C.T., Felton, G.W., andDuffey, S.S. 1991. Plant defenses: chlorogenic acid and polyphenol oxidase enhance toxicity ofBacillus thuringiensis subsp.Kurstaki toHeliothis zea.J. Chem. Ecol. 17:217–237.

    Google Scholar 

  • Lynn, D.G., andChang, M. 1990. Phenolic signals in cohabitation: Implications for plant development.Annu. Rev. Plant Physiol. 41:497–526.

    Google Scholar 

  • Martin, J.S., Martin, M.M., andBernays, E.A. 1987. Failure of tannic acid to inhibit digestion or reduce digestibility of plant protein in gut fluids of insect herbivores: Implication for theories of plant defense.J. Chem. Ecol. 13:605–621.

    Google Scholar 

  • Martin, M.M. 1987. Invertebrate-Microbial Interactions. Cornell University Press, Ithaca, NewYork.

    Google Scholar 

  • Martin, M.M., andMartin, J.S. 1984. Surfactants: Their role in preventing the precipitation of proteins in insect guts.Oecologia 61:342–345.

    Google Scholar 

  • Martin, M.M., Martin, J.S., Kukor, J.J., andMerritt, R.W. 1980. The digestion of protein and carbohydrate by the stream detritivoreTipula abdominalis (Diptera, Tipulidae).Oecologia 46:360–364.

    Google Scholar 

  • Martin, M.M., Martin, J.S., Kukor, J.J., andMerritt, R.W. 1981a. The digestive enzymes of detritus-feeding stonefly nymphs (Plecoptera, Pteronarcyidae).Can. J. Zool. 59:1947–1951.

    Google Scholar 

  • Martin, M.M., Kukor, J.J., Martin, J.S., Lawson, D.L., andMerritt, R.W. 1981b. Digestive enzymes of larvae of three species of caddisflies (Trichoptera).Insect Biochem. 11:501–505.

    Google Scholar 

  • Mayer, A.M. 1987. Polyphenol oxidases in plants-recent progress.Phytochemistry 26:11–20.

    Google Scholar 

  • Matern, U., andKneusel, R.E. 1988. Phenolic compounds in plant disease resistance.Phytoparasitica 16:213–226.

    Google Scholar 

  • McArthur, C., Hagerman, A., andRobbins, C.T. 1991. Physiological strategies of mammalian herbivores against plant defenses, pp. 103–114,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • McColl, J.G., andPohlman, A.A. 1986. Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soils.Water, Air, Soil Pollut. 31:917–927.

    Google Scholar 

  • McColl, J.G., Pohlman, A.A., Jersak, J.M., Tam, S.C., andNorthup, R.R. 1990. Organics and metal solubility in California forest soils, pp. 178–195,in S.P. Gessel, D.S. Lacate, G.F. Weetman, and R.F. Powers (eds.). Sustained Productivity of Forest Soils. Proceedings, 7th North American Forest Soils Conference, University of British Columbia, Faculty of Forestry Publication, Vancouver, British Columbia.

    Google Scholar 

  • Mehansho, H., Butler, L.G., andCarlson, D.M. 1987. Dietary tannins and salivary prolinerich proteins: Interactions, induction and defense mechanisms.Anna. Rev. Nutr. 7:423–440.

    Google Scholar 

  • Meister, A. 1981. Metabolism and functions of glutathione.Trends Biochem. Sci. 6:231–234.

    Google Scholar 

  • Mink, G.I., andSaksena, K.N. 1971. Studies on the mechanism of oxidative inactivation of plant viruses byo-quinones.Virology 45:755–763.

    Google Scholar 

  • Miles, P.W., andPeng, Z. 1989. Studies on the salivary physiology of plant bugs: detoxification of phytochemicals by the salivary peroxidase of aphids.J. Insect Physiol. 35:865–872.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1985. Stimulatory effects of tannins and cholic acid on tryptic hydrolysis of proteins: ecological implications.J. Chem. Ecol. 11:1323–1332.

    Google Scholar 

  • Mole, S., andWaterman, P.G. 1987. Tannins as antifeedents to mammalian herbivores-still an open question?, pp. 572–587,in G.R. Waller (ed.). Allelochemicals: Role in Agriculture and Forestry. ACS Symposium Series 330. American Chemical Society, Washington, D.C.

    Google Scholar 

  • Mole, S.M., Rogler, J.C., Morell, J., andButler, L.G. 1990. Herbivore growth reduction by tannins: use of Waldbauer ratio techniques and manipulation of salivary protein production to elucidate mechanisms of action.Biochem. Syst. Ecol. 18:183–197.

    Google Scholar 

  • Müller, R.N., Kalisz, P.J., andLuken, J.O. 1989. Fine root production of astringent phenolics.Oecologia 79:563–565.

    Google Scholar 

  • Munster, U., andChrost, R.J. 1990. Origin, composition and microbial utilization of dissolved organic matter, pp. 8–46,in Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer-Verlag, New York.

    Google Scholar 

  • Newman, R.M. 1991. Herbivory and detritivory on freshwater macrophytes by invertebrates: A review.J. North Am. Benth. Soc. 10:89–114.

    Google Scholar 

  • Nichols-Orians, C. 1991. Differential effects of condensed and hydrolyzable tannin on polyphenol oxidase activity of attine symbiotic fungus.J. Chem. Ecol. 17:1811–1819.

    Google Scholar 

  • Nicholson, R.L., andHammerschmidt, R. 1992. Phenolic compounds and their role in disease resistance.Annu. Rev. Phytopathol. 30:369–389.

    Google Scholar 

  • Oda, Y., Kato, H., Isoda, Y., Takahashi, N., Yamamoto, T., Takada, Y., andKudo, S. 1989. Purification and properties of phenoloxidase from spinach leaves.Agric. Biol. Chem. 53:2053–2061.

    Google Scholar 

  • Oh, H.I., Hoff, J.E., Armstrong, G.S., andHaff, L.A. 1980. Hydrophobic interaction in tannin-protein complexes.J. Agric. Food Chem. 28:394–398.

    Google Scholar 

  • Osawa, R. 1992. Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration.Appl. Environ. Microbiol. 58:1754–1759.

    Google Scholar 

  • Osawa, R., andSly, L.I. 1992. Occurrence of tannin-protein complex degradingStreptococcus sp. in feces of various animals.Syst. Appl. Microbiol. 15:144–147.

    Google Scholar 

  • Owusu-Ansah, Y.J. 1989. Polyphenoloxidase in wild rice (Zizania palustris).J. Sci. Food Agric. 37:901–904.

    Google Scholar 

  • Palm, C.A., andSanchez, P.A. 1991. Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenol contents.Soil Biol. Biochem. 23:83–88.

    Google Scholar 

  • Palo, R.T., andRobbins, C.T. (eds.) 1991. Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Parfitt, D.E., Fox, G.J., andBrosz, J.D. 1986. Relationship of chiorogenic acid concentration in sunflower achenes to bird predation of sunflower.Can. J. Plant Sci. 66:11–17.

    Google Scholar 

  • Parker, N.O., Sundholm, C., Svanholm, N., Ronlan, A., andHammerich, O. 1979. Hydroxyl compounds, pp. 181–340,in A.J. Bard and J. Lund (eds.). Encyclopedia of Electrochemistry of the Elements, Vol. 11. Marcel Dekker, New York.

    Google Scholar 

  • Patra, H.K., andMishra, D. 1979. Pyrophosphatase, peroxidase and polyphenoloxidase activities during leaf development and senescence.Plant Physiol. 63:318–323.

    Google Scholar 

  • Peng, Z., andMiles, P.W. 1988a. Acceptability of catechin and its oxidative condensation products to the rose aphid,Macrosiphum rosae.Entomol. Exp. Appl. 47:255–265.

    Google Scholar 

  • Peng, Z., andMiles, P.W. 1988b. Studies on the salivary physiology of plant bugs: Function of the catechol oxidase of the rose aphid.J. Insect Physiol. 34:1027–1033.

    Google Scholar 

  • Peters, N.K., andVerma, D.P.S. 1990. Phenolic compounds as regulators of gene expression in plant-microbe interactions.Mol. Plant-Microbe Interact. 3:4–8.

    Google Scholar 

  • Phan, C.T. 1991. Phenolics and polyketides in carrots, pp. 559–568,in R.P. Sharma and D.K. Salunkhe (eds.). Mycotoxins and Phytoalexins. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pierpoint, W.S. 1969a. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides.Biochem. J. 112:609–616.

    Google Scholar 

  • Pierpoint, W.S. 1969b. o-Quinones formed in plant extracts. Their reaction with bovine serum albumin.Biochem. J. 112:619–629.

    Google Scholar 

  • Putnam, A.R., andTang, C. 1986. The Science of Allelopathy. John Wiley and Sons, New York.

    Google Scholar 

  • Racon, L., Sadaka, N., Gil, G., Le Petit, J., Matheron, R., Poinsot-Balaguer, N., Sigoillot, J.C., andWoltz, P. 1988. Histological and chemical changes in tannic compounds of ever-green oak leaf litter.Can. J. Bot. 66:663–667.

    Google Scholar 

  • Raubenheimer, D. 1992. Tannic acid, protein, and digestible carbohydrate: Dietary imbalance and nutritional compensation in locusts.Ecology 73:1012–1027.

    Google Scholar 

  • Reimer, J., andWhittaker, J.B. 1989. Air pollution and insect herbivores: Observed interactions and possible mechanisms, pp. 73–105,in E.A. Bernays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Reese, J.C. 1978. Chronic effects of plant allelochemics on insect nutritional physiology.Entomol. Exp. Appl. 24:425–431.

    Google Scholar 

  • Rhoades, D.F. 1977. The antiherbivore chemistry ofLarrea, pp. 135–175,in T.J. Mabry, J.H. Hunziker, and D.R. DiFeo (eds.). Creosote Bush: Biology and Chemistry ofLarrea in the New World Deserts. Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry.Recent Adv. Phytochem. 10:168–213.

    Google Scholar 

  • Rice, E.L. 1984. Allelopathy. Academic Press, Orlando, Florida, 422 pp.

    Google Scholar 

  • Rietsma, C.S., Valiela, J., andBuchsbaum, R. 1988. Detrital chemistry, growth, and food choice in the salt-marsh snail (Melampus bidentatus).Ecology 69:261–266.

    Google Scholar 

  • Rietveld, W.J. 1983. Allelopathic effects of juglone on germination and growth of several herbaceous and woody species.J. Chem. Ecol. 9:295–308.

    Google Scholar 

  • Robb, D.A. 1984. Tyrosinase, pp. 208–241,in R. Lontie (ed.). Copper Proteins and Copper Enzymes. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Robbins, C.T., Hagerman, A.E., Austin, P.J., McArthur, C., andHanley, T.A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications.J. Mammol. 72:480–486.

    Google Scholar 

  • Rossiter, M.C., Schultz, J.C., andBaldwin, I.T. 1988. Relationships among defoliation, red oak phenolics, and gypsy moth growth and reproduction.Ecology 69:267–277.

    Google Scholar 

  • Ruggiero, P., andRadogna, V.M. 1988. Humic acids-tyrosinase interactions as a model of soil humic-enzyme complexes.Soil Biol. Biochem. 20:353–359.

    Google Scholar 

  • Ryan, J.D., Gregory, P., andTingey, W.M. 1982. Phenolic oxidase activities in glandular trichomes ofSolanum berthaultii.Phytochemistry 21:1885–1887.

    Google Scholar 

  • Salunkhe, D.K., Chavan, J.K., andKadam, S.S. 1990. Dietary Tannins: Consequences and Remedies. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sanchez-Ferrer, A., Bru, R., Valero, E., andGarcia-Carmona, F. 1989. Changes in pH-dependent grape polyphenoloxidase activity during maturation.J. Sci. Food Agric. 37:1242–1245.

    Google Scholar 

  • Scandalios, J.G. 1990. Response of plant antioxidant defense genes to environmental stress.Adv. Genet. 28:1–41.

    Google Scholar 

  • Schlesinger, W.H. 1991. Biogeochemistry: An Analysis of Global Change. Academic Press, San Diego, California.

    Google Scholar 

  • Schmidt, S.K. 1988. Degradation of juglone by soil bacteria.J. Chem. Ecol. 14:1561–1571.

    Google Scholar 

  • Schüler, P. 1990. Natural antioxidants exploited commercially, pp. 99–170,in B.J.F. Hudson (ed.). Food Antioxidants. Elsevier Science Publ., Amsterdam.

    Google Scholar 

  • Schultz, J.C. 1989. Tannin-insect interactions, pp. 417–433,in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Schultz, J.C., andKeating, S.T. 1991. Host-plant mediated interactions between the gypsy moth and a baculovirus, pp. 489–506in R. Barbosa, V.A. Krischik, and C.G. Jones (eds.). Microbial Mediation of Plant-Herbivore Interactions. John Wiley & Sons, New York.

    Google Scholar 

  • Schultz, J.C,Hunter, M.D., andAppel, H.M. 1992. Antimicrobial activity of polyphenols mediates plant-herbivore interactions, pp. 621–637,in R.W. Hemingway (ed.). Plant Polyphenols: Biogenesis, Chemical Properties, and Significance. Plenum Press.

  • Seigler, D., andPrice, P.W. 1976. Secondary compounds in plants: primary functions.Am. Nat. 110:101–105.

    Google Scholar 

  • Shafer, S.R., andBlum, U. 1991. Influence of phenolic acids on microbial populations in the rhizosphere of cucumber.J. Chem. Ecol. 7:369–389.

    Google Scholar 

  • Shannon, M.J.R., andBartha, R. 1988. Immobilization of leachable toxic soil pollutants by using oxidative enzymes.Appl. Environ. Microbiol. 54:1719–1723.

    Google Scholar 

  • Smith, E.S., Dudley, M.W., andLynn, D.G. 1990. Vegetative/parasitic transition: Control and plasticity inStriga development.Plant Physiol. 93:208–215.

    Google Scholar 

  • Smith, J.A., Hammerschmidt, R., andFulbright, D.W. 1991. Rapid induction of systemic resistance in cucumber byPseudomonas syringae pv.syringae.Physiol. Mol. Plant Pathol. 38:223–235.

    Google Scholar 

  • Smith, M.T. 1985. Quinones as mutagens, carcinogens, and anticancer agents: Introduction and overview.J. Toxicol. Environ. Health 16:665–672.

    Google Scholar 

  • Southerton, S.G., andDeverall, B.J. 1990. Changes in phenylalanine ammonia-lyase and peroxidase activities in wheat cultivars expressing resistance to the leaf-rust fungus.Plant Pathol. 39:223–230.

    Google Scholar 

  • Steinberg, P.D., andVan Altena, F.A. 1992. Tolerance of marine invertebrate herbivores to brown algal phlorotannins in temperate Australasia.Ecol. Monogr. 62:189–222.

    Google Scholar 

  • Steinberg, P.D., Edyvane, K., De Nys, R., Birdsey, R., andVan Altena, F.A. 1991. Lack of avoidance of phenolic rich brown algae by tropical herbivorous fishes.Mar. Biol. 109:335–343.

    Google Scholar 

  • Steinly, B.A., andBerenbaum, M. 1985. Histopathological effects of tannins on the midgut epithelium ofPapilio polyxenes andPapilio glaucus.Entomol. Exp. Appl. 39:3–9.

    Google Scholar 

  • Stevenson, F.J. 1982. Humus Chemistry. Genesis, Composition, Reactions. John Wiley & Sons, New York.

    Google Scholar 

  • Stipanovic, R.D.,Mace, M.E.,Elissalde, M.H., andBell, A.A. 1991. Desoxyhemigossypol, a cotton phytoalexin, structure-activity relationship, pp. 336–351,in P.A. Hedin (ed.). Naturally Occurring Pest Bioregulators. American Chemical Society Symposium Series 449, Washington, D.C.

  • Stout, R.J. 1989. Effects of condensed tannins on leaf processing in mid-latitude and tropical streams: A theoretical approach.Can. J. Fish. Aquat. Sci. 46:1097–1106.

    Google Scholar 

  • Swain, T. 1979. Tannins and lignins, pp. 657–718,in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. 1: The Chemical Participants. Academic Press, San Diego, California.

    Google Scholar 

  • Szklarz, G.D., Antibus, R.K., Sinsabaugh, R.L., andLinkins, A.E. 1989. Production of phenol oxidases and peroxidases by wood-rooting fungi.Mycologia 81:234–240.

    Google Scholar 

  • Takechi, M., andTanaka, Y. 1987. Binding of 1,2,3,4,6-pentagalloyiglucose to proteins, lipids, nucleic acids and sugars.Phytochemistry 26:95–97.

    Google Scholar 

  • Tallemy, D.W., andRaupp, M.J. 1991. Phytochemical Induction by Herbivores. Wiley Interscience, New York.

    Google Scholar 

  • Tan, K.H., andBinger, A. 1986. Effect of humic acid on aluminum toxicity in corn plants.Soil Sci. 141:20–25.

    Google Scholar 

  • Taper, M.L., Zimmerman, E.R., andCase, T.J. 1986. Sources of mortality for a cynipid gall-wasp [Dryocosmus dubiosus (Hymenoptera: Cynipidae)]: The importance of the tannin/fungus interaction.Oecologia 68:437–445.

    Google Scholar 

  • Tate, R.L., III. 1987. Soil Organic Matter: Biological and Ecological Effects. John Wiley & Sons, New York.

    Google Scholar 

  • Taylor, C.E., andMurant, A.F. 1966. Nematicidal activity of aqueous extracts from raspberry canes and roots.Nematology 12:488–494.

    Google Scholar 

  • Tugwell, S., andBranch, G.M. 1992. Do polyphenols in marine algae reduce digestibility?Ecology 73:205–215.

    Google Scholar 

  • Undeen, A.H. 1979. Simulid larval midgut pH and its implications for control.Mosquito News 39:391–392.

    Google Scholar 

  • Valero, E., andGarcia-Carmona, F. 1992. Hysteresis and cooperative behavior of a latent plant polyphenoloxidase.Plant Physiol. 98:774–776.

    Google Scholar 

  • Van Alstyne, K.L., andPaul, V.J. 1990. The biogeography of polyphenolic compounds in marine macroalgae: Temparate brown algal defenses deter feeding by tropical herbivorous fishes.Oecologia 84:158–163.

    Google Scholar 

  • Van Den Berg, B., andVan Huystee, R.B. 1984. Rapid isolation of plant peroxidase. Purification of peroxidasea fromPetunia.Physiol. Plant. 60:299–304.

    Google Scholar 

  • Van Huystee, R.B., andCairns, W.L. 1980. Appraisal of studies on induction of peroxidase and associated porphyrin metabolism.Bot. Rev. 46:429–446.

    Google Scholar 

  • Vaughn, K.C., andDuke, S.O. 1984. Function of polyphenol oxidase in higher plants.Physiol. Plant. 60:106–112.

    Google Scholar 

  • Waterman, P.G., andMole, S. 1989. Extrinsic factors influencing production of secondary metabolites in plants, pp. 107–134,in E.A. Beraays (ed.). Insect-Plant Interactions, Vol. I. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Werner, R.M., andDindal, D.L. 1986. Nutritional ecology of soil arthropods, pp. 815–836,in F. Slansky, Jr., and J.G. Rodrigruez, (eds.). Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. John Wiley & Sons. New York.

    Google Scholar 

  • Wetzel, R.G. 1993. Humic compounds from wetlands: Complexation, inactivation, transport, and reactivation of microbial extracellular enzymes.Verh. Internat. Verein. Limnol. In press.

  • Williamson, G.B., andWeidenhamer, J.D. 1990. Bacterial degradation of juglone: Evidence against allelopathy?J. Chem. Ecol. 16:1739–1741.

    Google Scholar 

  • Ye, X.S., Pan, S.Q., andKuc, J. 1990. Activity, isozyme pattern, and cellular localization of peroxidase as related to systemic resistance of tobacco to blue mold (Peronospora tabacina) and to tobacco mosaic virus.Phytopathology 80:1295–1299.

    Google Scholar 

  • Yu, S.J. 1987. Quinone reductase of phytophagous insects and its induction by allelochemicals.Comp. Biochem. Physiol. 87B:621–624.

    Google Scholar 

  • Zucker, W.V. 1983. Tannins: Does structure determine function? An ecological perspective.Am. Nat. 121:335–365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appel, H.M. Phenolics in ecological interactions: The importance of oxidation. J Chem Ecol 19, 1521–1552 (1993). https://doi.org/10.1007/BF00984895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00984895

Key Words

Navigation