Skip to main content
Log in

Consequences of biotransformation of plant secondary metabolites on acid-base metabolism in mammals—A final common pathway?

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Regulation of acid-base homeostasis is essential for mammals and birds. Biotransformation and metabolism of absorbed plant secondary metabolites (PSMs) results in the production of organic acids that threaten acid-base homeostasis. Consequently these acids must be buffered and excreted from the body. The production of an acid load from detoxified PSMs should occur in herbivorous mammals and birds and with most PSMs and so may provide a unifying theme to explain many effects of PSMs on animal metabolism. Since the organic acids will be largely ionized at physiological pH, disposal of the hydrogen ion and the organic anion may proceed independently. Most hydrogen ions (H+) from organic acids are eliminated by one or more of three ways: (1) when they react with bicarbonate in the extracellular fluid to form carbon dioxide and the carbon dioxide is exhaled, (2) when they bind to dibasic phosphate and are excreted by the kidney as monobasic phosphate, and (3) when they are buffered and retained in the skeletal system. The secretion of phosphate ions and ammonium excretion are two ways in which the kidney replaces bicarbonate ions that have been eliminated as carbon dioxide. Secretion in the kidney tubule is an important means of excreting excessive organic anions rapidly. This process is saturable and may be subject to competition from a variety of different metabolites. Lagomorphs have limited capacity to form new bicarbonate from ammonium excretion and may therefore be obliged to excrete other cations such as sodium to balance the excretion of organic anions from PSMs. Acidemia has wide-ranging impacts on animals but browsing mammals and birds may have to break down muscle tissues to provide for urinary ammonium in order to generate bicarbonate for buffering. Acidemia also can affect the extent of urea recycling. Animals consuming browse diets may have to regulate feeding so that the rate of formation of hydrogen ions does not exceed the rate of disposal. The mechanisms by which this could occur are unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abu Damir, H., Scott, D., Thompson, J.K., Topps, J.H., Buchan, W., andPennie, K. 1990. The effect of a change in blood acid-base status on body composition and mineral retention in growing lambs.Anim. Prod. 51:527–534.

    Google Scholar 

  • Abu Damir, H., Scott, D., Loveridge, N., Buchan, W., andMilne, J. 1991. The effects of feeding diets containing either NaHCO3 or NH4Cl on indices of bone formation and resorption and on mineral balance in the lamb.Exp. Physiol. 76:725–732.

    PubMed  Google Scholar 

  • Atkinson, D.E., andBourke, E. 1987. Metabolic aspects of the regulation of systemic pH.Am. J. Physiol. 252:F947-F956.

    PubMed  Google Scholar 

  • Bank, N., andSchwartz, W.B. 1960. The influence of anion penetrating ability on urinary acidification and the excretion of titratable acid.J. Clin. Invest. 39:1516–1525.

    PubMed  Google Scholar 

  • Barzel, U.S., andJowsey, J. 1969. The effects of chronic acid and alkali administration on bone turnover in adult rats.Clin. Sci. 36:517–524.

    PubMed  Google Scholar 

  • Baudinette, R.V., Wheldrake, J.F., Hewitt, S., andHawke, D. 1980. The metabolism of [14C]phenol by native Australian rodents and marsupials.Aust. J. Zool. 28:511–520.

    Google Scholar 

  • Boland, D.J., Brophy, J.J., andHouse, A.P.N. 1991.Eucalyptus Leaf Oils: Use, Chemistry, Distillation and Marketing. Inkata Press, Melbourne.

    Google Scholar 

  • Bryant, J.P., Reichardt, P.B., Clausen, T.P., Provenza, F.D., andKuropat, P.J. 1992. Woody plant-mammal interactions, pp. 344–371.in G.A. Rosenthal and M.R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Vol. II: Ecological and Evolutionary Processes. Academic Press, New York.

    Google Scholar 

  • Caldwell, J. 1982. The conjugation reactions in foreign compound metabolism: Definition, consequences and species variation.Drug Metab. Rev. 13:745–778.

    PubMed  Google Scholar 

  • Chilcott, M.J., andHume, I.D. 1984. Nitrogen and urea metabolism and nitrogen requirements of the common ringtail possum (Pseudocheirus peregrinus) fedEucalyptus andrewsii foliage.Aust. J. Zool. 32:615–622.

    Google Scholar 

  • Cooke, R.E., Boyden, D.G., andHaller, E. 1960. The relationship of acidosis and growth retardation.J. Pediatr. 57:326–337.

    PubMed  Google Scholar 

  • Cork, S.J. 1981. Digestion and metabolism in the koala (Phascolarctos cinereus Goldfuss): An arboreal folivore. PhD dissertation. University of New South Wales, Sydney.

    Google Scholar 

  • Cork, S.J. 1992. Polyphenols and the distribution of arboreal folivorous marsupials inEucalyptus forests of Australia, pp. 653–664,in R.W. Hemingway (ed.). Plant Polyphenols: Biogenesis, Chemical Properties and Significance. Plenum Press, New York.

    Google Scholar 

  • Cork, S.J., andFoley, W.J. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defences in temperate and tropical forests, pp. 133–166,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Cruz-Soto, M., Battle, D., Sabatini, S., Arruda, J.A.L., andKurtzman, N.A. 1982. Distal acidification in the rabbit: The role of diet and blood pH.Am. J. Physiol. 243:F364-F371.

    PubMed  Google Scholar 

  • De Fronzo, R.A., andBeckles, A.D. 1979. Glucose intolerance following chronic metabolic acidosis in man.Am. J. Physiol. 236:E328-E334.

    PubMed  Google Scholar 

  • De Sousa, R.T., Harrington, J.C., Ricanati, E.S., Shelkrot, J.S., andSchwartz, W.B. 1974. Renal regulation of acid-base equilibrium during chronic administration of mineral acid.J. Clin. Invest. 53:465–476.

    PubMed  Google Scholar 

  • Foley, W.J. 1992. Nitrogen and energy retention and acid-base status in the common ringtail possum (Pseudocheirus peregrinus): Evidence of the effects of absorbed PSMs.Physiol. Zool. 65:403–421.

    Google Scholar 

  • Foley, W.J., andHume, I.D. 1987. Nitrogen requirements and urea metabolism in two arboreal marsupials, the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula) fedEucalyptus foliage.Physiol. Zool. 60:241–250.

    Google Scholar 

  • Foley, W.J., andMcArthur, C. 1994. the effects and costs of ingested allelochemicals in mammals: An ecological perspective, pp. 370–391,in D.J. Chivers and P. Langer (eds.). The Digestive System in Mammals: Food, Form and Function. Cambridge University Press, Cambridge.

    Google Scholar 

  • Foley, W.J., Lassak, E.V., andBrophy, J. 1987. Digestion and absorption ofEucalyptus essential oils in greater glider (Petauroides volans) and brushtail possum (Trichosurus vulpecula).J. Chem. Ecol. 13:2115–2130.

    Google Scholar 

  • Freeland, W.J., andJanzen, D.H. 1974. Strategies in herbivory by mammals: The role of plant secondary compounds.Am. Nat. 108:269–289.

    Google Scholar 

  • Gennari, F.J., andMaddox, D.A. 1992. Renal regulation of acid-base homeostasis. Integrated response, pp. 2695–2732,in D.W. Seldin and G. Giebisch (eds.). The Kidney: Physiology and Pathophysiology. Raven Press, New York.

    Google Scholar 

  • Green, J., andKleeman, C.R. 1991. Role of bone in regulation of systemic acid-base balance.Kidney Int. 39:9–26.

    PubMed  Google Scholar 

  • Halperin, M.L., Ethier, J.H., andKamel, K.S. 1989. Ammonium excretion in chronic metabolic acidosis: Risks and benefits.Am. J. Kid. Dis. 9:265–268.

    Google Scholar 

  • Halperin, M.L., Goldstein, M.B., Stinebaugh, B.J., andJungas, R.L. 1992. Biochemistry and physiology of ammonium excretion, pp. 1471–1490,in D.W. Seldin and G. Giebisch (eds.). The Kidney: Physiology and Pathophysiology. Raven Press, New York.

    Google Scholar 

  • Hamm, L.L., andSimon, E.E. 1987. Roles and mechanisms of urinary buffer excretion.Am. J. Physiol. 253:F595-F605.

    PubMed  Google Scholar 

  • Hannaford, M.C., Goldstein, M.G., Josse, R.G., andHalperin, M.L. 1975. Role of acidosis in the protein wasting of fasting in the rat and the rabbit.Can. J. Physiol. Pharmacol. 60:331–334.

    Google Scholar 

  • Harborne, J.B. 1991. The chemical basis of plant defense, pp. 45–59,in R.T. Palo and C.T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Hillis, W.E. 1966. Variation in polyphenol composition within species ofEucalyptus L'Herit.Phytochemistry 5:541–556.

    Google Scholar 

  • Hills, A.G. 1973. Acid-Base Balance. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hume, I.D., andEsson, C. 1993. Nutrients, antinutrients and leaf selection by captive koalas (Phascolarctos cinereus).Aust. J. Zool. 41:379–392.

    Google Scholar 

  • Iason, G., andPalo, R.T. 1991. Effects of birch phenolics on a grazing and a browsing mammal: A comparison of hares.J. Chem. Ecol. 17:1733–1743.

    Google Scholar 

  • Jamison, R.L. 1981. Urine concentration and dilution: The roles of antidiuretic hormone and urea, pp. 495–550,in D.W. Seldin and G. Giebisch (ed.). The Kidney: Physiology and Pathophysiology. Raven Press, New York.

    Google Scholar 

  • Jakubas, W.J., andGuillon, G.W. 1991. Use of quaking aspen flower buds by ruffed grouse: Its relationship to grouse densities and bud chemical composition.Condor 93:473–485.

    Google Scholar 

  • Jakubas, W.J., Karasov, W.H., andGuglielmo, C.G. 1993. Coniferyl benzoate in quaking aspen (Populus tremuloides)—its effect on energy and nitrogen digestion and retention in ruffed grouse (Bonasa umbellus).Physiol. Zool. 66:580–601.

    Google Scholar 

  • Kennedy, P.M., andMilligan, L.P. 1980. The degradation and utilization of endogenous urea in the gastrointestinal tract of ruminants; a review.Can. J. Anim. Sci. 60:205–221.

    Google Scholar 

  • Lemann, J., Lennon, E.J., Goodman, A.D., Litzow, J.R., andRelman, A.S. 1965. The net balance of acid in subjects given large loads of acid or alkali.J. Clin. Invest. 44:507–517.

    PubMed  Google Scholar 

  • Lemann, J., Litzow, J.R., andLennon, E.J. 1966. The effects of chronic acid loads in normal man: Further evidence for the participation of bone mineral in the defense against chronic metabolic acidosis.J. Clin. Invest. 45:1608–1614.

    PubMed  Google Scholar 

  • Lindroth, R.L., andBatzli, G.O. 1984. Plant phenolics as chemical defenses: The effects of natural phenolics on survival and growth of prairie voles (Microtus ochragaster).J. Chem. Ecol. 10:229–244.

    Google Scholar 

  • Madias, N.E., andZelman, S.J. 1986. The renal response to chronic mineral acid feeding: A reexamination of the role of systemic pH.Kidney Int. 29:667–674.

    PubMed  Google Scholar 

  • Madias, N.E., Schwartz, W.B., andCohen, J.J. 1977. The maladaptive renal response to secondary hypocapnia during chronic HCl acidosis in the dog.J. Clin. Invest. 60:1393–1399.

    PubMed  Google Scholar 

  • May, R.C., Kelly, R.A., andMitch, W.E. 1986. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoid dependent mechanism.J. Clin Invest. 77:614–621.

    PubMed  Google Scholar 

  • McLean, S., Foley, W.J., Davies, N.W., Brandon, S., Duo, L., andBlackman, A.J. 1993. The metabolic fate of dietary terpenes fromEucalyptus radiata in the common ringtail possum (Pseudocheirus peregrinus).J. Chem. Ecol. 19:1625–1643.

    Google Scholar 

  • Moller, J.V., andSheikh, M.I. 1983. Renal organic anion transport system: Pharmacological, physiological and biochemical aspects.Pharmacol. Rev. 34:315–358.

    Google Scholar 

  • Nebert, D.W., andGonzalez, F.J., 1987. P450 genes—structure, evolution and regulation.Annu. Rev. Biochem. 56:945–993.

    PubMed  Google Scholar 

  • Oh, M.S. 1991. Irrelevance of bone buffering to acid-base homeostasis in chronic metabolic acidosis.Nephron 59:7–10.

    PubMed  Google Scholar 

  • Palo, R.T., andRobbins, C.T. 1991. Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pehrson, A. 1983. Digestibility and retention of food components in caged mountain haresLepus timidus during the winter.Holarct. Ecol. 6:395–403.

    Google Scholar 

  • Phillip, L.E. 1986. The significance of acid-base homeostasis in efficiency of nitrogen utilization by ruminants. Proceedings, Ninth International Mineral Conference. IMC, Illinois.

    Google Scholar 

  • Phillip, L.E., andSimpson, M.V. 1991. Differentiation of the effects of protein status and acid-base balance on the appetite of sheep for lucerne silage.J. Agric. Sci. (Camb) 118:249–257.

    Google Scholar 

  • Pitts, R.F. 1964. Renal production and excretion of ammonia.Am. J. Med. 36:720–742.

    PubMed  Google Scholar 

  • Pritchard, J.B., andMiller, D.S. 1992. Proximal tubular transport of organic anions and cations, pp. 2921–2945,in D.W. Seldin and G. Giebisch (eds.). The Kidney: Physiology and Pathophysiology. Raven Press, New York.

    Google Scholar 

  • Reaich, D., Channon, S.M., Scrimgeour, C.M., andGoodship, T.H.J. 1992. Ammonium chloride-induced acidosis increases protein breakdown and amino-acid oxidation in humans.Am. J. Physiol. 263:E735-E739.

    PubMed  Google Scholar 

  • Reichardt, P.B., Bryant, J.P., Clausen, T.P., andWeiland, G.D. 1984. Defense of winter-dormant Alaska paper birch against snowshoe hares.Oecologia 65:58–69.

    Google Scholar 

  • Rhoades, D.F., andCates, R.G. 1976. Toward a general theory of plant antiherbivore chemistry, pp. 168–213,in J.W. Wallace and R.L. Mansell (eds.). Recent Advances in Phytochemistry. Plenum Press, New York.

    Google Scholar 

  • Richardson, R.M.A., Goldstein, M.B., Stinebaugh, B.J., andHalperin, M.L. 1978. Influence of diet and metabolism on urinary acid execution in the rat and rabbit.J. Lab. Clin. Med. 94:510–518.

    Google Scholar 

  • Robinson, D., Smith, J.N., andWilliams, R.T. 1953. Studies in detoxication: 52. The apparent dissociation constants of some glucuronides, mercapturic acids and related compounds.Biochem. J. 55:151–155.

    PubMed  Google Scholar 

  • Scheiss, W.A., Ayer, J.L., Lotspeich, W.D., andPitts, R.F. 1948. The renal regulation of acid-base balance in man. II. Factors affecting the excretion of titratable acid by the normal human subject.J. Clin. Invest. 27:57–64.

    Google Scholar 

  • Scheline, R.R. 1991. Handbook of Mammalian Metabolism of Plant Compounds. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Schwartz, W.B., Orning, K.J., andPorter, R. 1957. The internal distribution of hydrogen ions with varying degrees of metabolic acidosis.J. Clin. Invest. 36:373–379.

    PubMed  Google Scholar 

  • Scott, D. 1971a. Renal regulation of acid excretion in the red deer (Cervus elephus).Q. J. Exp. Physiol. 56:33–40.

    Google Scholar 

  • Scott, D. 1971b. Renal excretion of acid and base in the pig.Q. J. Exp. Physiol. 56:169–177.

    Google Scholar 

  • Scott, D., Whitelaw, F.G., andKay, M. 1971. Renal excretion of acid in calves fed either roughage or concentrate diets.Q. J. Exp. Physiol. 56:18–32.

    Google Scholar 

  • Sipes, I.G., andGandolfi, A.J. 1991. Biotransformation of toxicants, pp. 88–126,in M.O. Amdur, J. Doull, and C.D. Klassen (eds.). Casarett and Doull's Toxicology: The Basic Science of Poisons. Pergamon, New York.

    Google Scholar 

  • Smith, G.S. 1992. Toxification and detoxification of plant compounds by ruminants: An overview.J. Range Manage. 45:25–29.

    Google Scholar 

  • Takagi, H., andBlock, E. 1991. Effects of reducing dietary cation-anion balance on macromineral balance in sheep.J. Dairy Sci. 74:4202–4214.

    PubMed  Google Scholar 

  • Tannen, R.L. 1980. Control of acid excretion by the kidney.Annu. Rev. Med. 31:35–49.

    PubMed  Google Scholar 

  • Ullrich, K.J., andRumrich, G. 1988. Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions.Am. J. Physiol. 254:F453-F462.

    PubMed  Google Scholar 

  • Williams, B., Layward, E., andWalls, J. 1991. Skeletal muscle degradation and nitrogen wasting in rats with chronic metabolic acidosis.Clin. Sci. 80:457–462.

    PubMed  Google Scholar 

  • Williams, R.T. 1959. Detoxication Mechanisms. Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foley, W.J., McLean, S. & Cork, S.J. Consequences of biotransformation of plant secondary metabolites on acid-base metabolism in mammals—A final common pathway?. J Chem Ecol 21, 721–743 (1995). https://doi.org/10.1007/BF02033457

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033457

Key Words

Navigation