Skip to main content
Log in

Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer nanocomposite (PNC) films based on sodium alginate and polyaniline (SA/PANi) and TiO2 as nanoceramic were synthesized by solution casting method. XRD displayed that the average size crystalline of the TiO2 NPs is 19 nm, and the amorphuos degree of the SA/PANi blend decreased due to the addition of TiO2 NPs. The interaction between the TiO2 NPs and the SA/PANi blend was confirmed by FT-IR spectroscopy, due to vibrational changes that occurred after the addition of TiO2 dopant in the polymer blend. The UV–Visible spectrum was used to calculate optical energy band gaps (direct and indirect). Both of the Egdi and Egind were reduced with the rise in TiO2 content. Thermogravimetric showed that the thermal stability of the nanocomposite was higher than the pure SA/PANi. With the increase in TiO2 NPs concentrations and frequency, the electrical properties such as dielectric and ac conductivity of pure blend improved and displayed maximum electrical properties (dielectric and conductivity) at 1 wt% loading. Additionally, the doping of TiO2 NPs in the polymer matrix proved that the nanocomposites exhibited excellent antimicrobial activity against all the bacteria taken for the test. It is obvious from the results that the nanocomposites have the potential for use in active packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.M. Abdelghany, A.H. Oraby, G.M. Asnag, Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J. Mol. Struct. 1180, 15–25 (2019)

    Article  CAS  Google Scholar 

  2. M.A. Morsi, S.A. El-Khodary, A. Rajeh, Enhancement of the optical, thermal and electrical properties of PEO/PAM: Li polymer electrolyte films doped with Ag nanoparticles. Phys. B 539, 88–96 (2018)

    Article  CAS  Google Scholar 

  3. E.M. Abdelrazek, I.S. Elashmawi, A. Hezma, A. Rajeh, The accessibility of change of the structural, morphological and thermal properties by intermolecular hydrogen bonding in PEO/PVA blend containing MnCl2. Int. J. Mod. Appl. Phys. I(1), 83–96 (2012)

    Google Scholar 

  4. B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications—a review. J. Membr. Sci. 259, 10–26 (2005)

    Article  CAS  Google Scholar 

  5. G. Wu, Y. Wang, C. Pan, A. Feng, Synthesis, preparation and mechanical property of wood fiber-reinforced poly (vinyl chloride) composites. J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)

    Article  CAS  Google Scholar 

  6. A. Feng, G. Wu, C. Pan, Y. Wang, The behavior of acid treating carbon fiber and the mechanical properties and thermal conductivity of phenolic resin matrix composites. J. Nanosci. Nanotechnol. 17, 3786–3791 (2017)

    Article  CAS  Google Scholar 

  7. D.E. Fenton, Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14, 589 (1973)

    Article  CAS  Google Scholar 

  8. B. Kirezli et al., Electrical and optical properties of photodiode structures formed by surface polymerization of P (Egdma-Vpca)-Swcnt films on n-si. J. Mol. Struct. 1198, 126879 (2019)

    Article  CAS  Google Scholar 

  9. D.Y. Liu, J.R. Reynolds, Dioxythiophene-based polymer electrodes for supercapacitor modules. ACS Appl. Mater. Interfaces 2, 3586–3593 (2010)

    Article  CAS  Google Scholar 

  10. J. Bhadra, D. Sarkar, Self-assembled polyaniline nanorods synthesized by facile route of dispersion polymerization. Mater. Lett. 63, 69–71 (2009)

    Article  CAS  Google Scholar 

  11. E.K. Solak, O. Şanlı, Use of sodium alginate-poly(vinyl pyrrolidone) membranes for pervaporation separation of acetone/water mixtures. Sep. Sci. Technol. 45, 1354–1362 (2010)

    Article  CAS  Google Scholar 

  12. M.S. El-Bana, G. Mohammed, A.M. El Sayed, S. El-Gamal, Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polym. Compos. 39, 3712–3725 (2018)

    Article  CAS  Google Scholar 

  13. A. Feng, T. Hou, Z. Jia, G. Wu, Synthesis of a hierarchical carbon fiber@ cobalt ferrite@ manganese dioxide composite and its application as a microwave absorber. RSC Adv. 10, 10510–10518 (2020)

    Article  CAS  Google Scholar 

  14. A. Feng, T. Hou, Z. Jia, Y. Zhang, F. Zhang, G. Wu, Preparation and characterization of epoxy resin filled with Ti3C2Tx MXene nanosheets with excellent electric conductivity. Nanomaterials 10, 162 (2020)

    Article  CAS  Google Scholar 

  15. M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. 2013, 1–10 (2013)

    Article  CAS  Google Scholar 

  16. F.H.A. El-kader, N.A. Hakeem, R.S. Hafez, A.M. Ismail, Effect of Li4Ti5O12 nanoparticles on structural, optical and thermal properties of PVDF/PEO blend. J. Inorg. Organomet. Polym. Mater. 28, 1037–1048 (2018)

    Article  CAS  Google Scholar 

  17. M.T. Ramesan, V. Santhi, B.K. Bahuleyan, M.A. Al-Maghrabi, Structural characterization, material properties and sensor application study of in situ polymerized polypyrrole/silver doped titanium dioxide nanocomposites. Mater. Chem. Phys. 211, 343–354 (2018)

    Article  CAS  Google Scholar 

  18. K. Gokul Raj et al., Anti-proliferative effect of fungal taxol extracted from Cladosporium oxysporum against human pathogenic bacteria and human colon cancer cell line HCT 15. Spectrochim. Acta A 138, 667–674 (2015)

    Article  CAS  Google Scholar 

  19. H. Zhang, G. Chen, Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol–gel method. Environ. Sci. Technol. 43, 2905–2910 (2009)

    Article  CAS  Google Scholar 

  20. K. Suhailath, M.T. Ramesan, Effect of neodymium-doped titanium dioxide nanoparticles on the structural, mechanical, and electrical properties of poly(butyl methacrylate) nanocomposites. J. Vinyl Add. Technol. 25, 9–18 (2019)

    Article  CAS  Google Scholar 

  21. M. Ravi, K. Kiran Kumar, V. Madhu Mohan, V.V.R. Narasimha Rao, Effect of nano TiO2 filler on the structural and electrical properties of PVP based polymer electrolyte films. Polym. Testing 33, 152–160 (2014)

    Article  CAS  Google Scholar 

  22. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochem. Commun. 11, 1158–1161 (2009)

    Article  CAS  Google Scholar 

  23. J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010)

    Article  CAS  Google Scholar 

  24. M.M. Abutalib, Insights into the structural, optical, thermal, dielectric, and electrical properties of PMMA/PANI loaded with graphene oxide nanoparticles. Phys. B 552, 19–29 (2019)

    Article  CAS  Google Scholar 

  25. M. Fertah, A. Belfkira, E. Montassir Dahmane, M. Taourirte, F. Brouillette, Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 10, S3707–S3714 (2017)

    Article  CAS  Google Scholar 

  26. A.M. El Sayed, S. El-Gamal, W.M. Morsi, G. Mohammed, Effect of PVA and copper oxide nanoparticles on the structural, optical, and electrical properties of carboxymethyl cellulose films. J. Mater. Sci. 50, 4717–4728 (2015)

    Article  CAS  Google Scholar 

  27. M.M. Abutalib, A. Rajeh, Influence of ZnO/Ag nanoparticles doping on the structural, thermal, optical and electrical properties of PAM/PEO composite. Phys. B 578, 411796 (2019)

    Article  CAS  Google Scholar 

  28. T. Sampreeth, M.A. Al-Maghrabi, B.K. Bahuleyan, M.T. Ramesan, Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. J. Mater. Sci. 53, 591–603 (2018)

    Article  CAS  Google Scholar 

  29. N.A. El-Ghamaz et al., DC electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes. Spectrochim. Acta A 83(1), 61–66 (2011)

    Article  CAS  Google Scholar 

  30. M.A. Morsi, A. Rajeh, A.A. Al-Muntaser, Reinforcement of the optical, thermal and electrical properties of PEO based on MWCNTs/Au hybrid fillers: nanodielectric materials for organoelectronic devices. Composites B 173, 106957 (2019)

    Article  CAS  Google Scholar 

  31. M.A. Morsi, A. Rajeh, A.A. Menazea, Nanosecond laser-irradiation assisted the improvement of structural, optical and thermal properties of polyvinyl pyrrolidone/carboxymethyl cellulose blend filled with gold nanoparticles. J. Mater. Sci. Mater. Electron. 30, 2693–2705 (2019)

    Article  CAS  Google Scholar 

  32. A.M. Hezma, I.S. Elashmawi, A. Rajeh, Change spectroscopic, thermal and mechanical studies of PU/PVC blends. Phys. B 495, 4–10 (2016)

    Article  CAS  Google Scholar 

  33. M.D. Stamate, Dielectric properties of TiO2 thin films deposited by a DC magnetron sputtering system. Thin Solid Films 372, 246–249 (2000)

    Article  CAS  Google Scholar 

  34. C. Manoharan et al., Structural, optical and electrical properties of Zr-doped In2O3 thin films. Spectrochim. Acta A 145, 47–53 (2015)

    Article  CAS  Google Scholar 

  35. S.W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto, Synthesis, characterization and microwave absorption property of doped polyaniline nanocomposites containing TiO2 nanoparticles and carbon nanotubes. Synth. Met. 158, 251–258 (2008)

    Article  CAS  Google Scholar 

  36. G. Shanmugam, V. Krishnakumar, Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA–PVP polymer composite films. Indian J. Phys. 92, 605–613 (2018)

    Article  CAS  Google Scholar 

  37. M.T. Ramesan, K. Dilsha, Structural properties, conductivity, dielectric behaviour and gas sensing application of polyaniline/phenothiazine/copper sulphide blend nanocomposites. Mater. Res. Express. 6, 105328 (2019)

    Article  CAS  Google Scholar 

  38. E.M. Abdelrazek, I.S. Elashmawi, A.M. Hezma, A. Rajeh, M. Kamal, Effect of an encapsulate carbon nanotubes (CNTs) on structural and electrical properties of PU/PVC nanocomposites. Phys. B 502, 48–55 (2016)

    Article  CAS  Google Scholar 

  39. P. Mahalakshmi, S. Chitra, K.P. Radha, Dielectric and ionic conductivity analysis of solid polymer electrolyte based on PMMA. Int. J. Adv. Sci. Res. 1, 21–24 (2016)

    Google Scholar 

  40. R.S.D. Sangeetha et al., Analysis of dielectric, modulus, electro chemical stability of PVP–ABSA polymer electrolyte systems. Int. J. Chem. Sci. 14(1), 477–481 (2016)

    CAS  Google Scholar 

  41. H.J. Woo, S.R. Majid, A.K. Arof, Dielectric properties and morphology of polymer electrolyte based on poly(ɛ-caprolactone) and ammonium thiocyanate. Mater. Chem. Phys. 134, 755–761 (2012)

    Article  CAS  Google Scholar 

  42. K.P. Radha, S. Selvasekarapandian, S. Karthikeyan, M. Hema, C. Sanjeeviraja, Synthesis and impedance analysis of proton-conducting polymer electrolyte PVA:NH4F. Ionics 19, 1437–1447 (2013)

    Article  CAS  Google Scholar 

  43. I.S. Elashmawi, E.M. Abdelrazek, A.M. Hezma, A. Rajeh, Modification and development of electrical and magnetic properties of PVA/PEO incorporated with MnCl2. Phys. B 434, 57–63 (2014)

    Article  CAS  Google Scholar 

  44. A.M. Hezma, I.S. Elashmawi, E.M. Abdelrazek, A. Rajeh, Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog. Nat. Sci. Mater. Int. 27, 338–343 (2017)

    Article  CAS  Google Scholar 

  45. M. Haghi et al., Antibacterial effect of TiO2 nanoparticles on pathogenic strain of E. coli. Int. J. Adv. Biotechnol. Res. 3(3), 621–624 (2012)

    CAS  Google Scholar 

  46. P. Kanmani, J.-W. Rhim, Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 106, 190–199 (2014)

    Article  CAS  Google Scholar 

  47. A.M. Hezma, A. Rajeh, M.A. Mannaa, An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite. Colloids Surf. A 581, 123821 (2019)

    Article  CAS  Google Scholar 

  48. F. Martinez Gutierrez et al., Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6(5), 681–688 (2010)

    Article  CAS  Google Scholar 

  49. Z.I. Abdeen, A.F. El-Farargy, N.A. Negm, Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J. Mol. Liq. 250, 335–343 (2018)

    Article  CAS  Google Scholar 

  50. A. Orsuwan et al., Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll. 60, 476–485 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-145-363-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Abutalib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abutalib, M.M., Rajeh, A. Preparation and characterization of polyaniline/sodium alginate-doped TiO2 nanoparticles with promising mechanical and electrical properties and antimicrobial activity for food packaging applications. J Mater Sci: Mater Electron 31, 9430–9442 (2020). https://doi.org/10.1007/s10854-020-03483-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03483-8

Navigation